
www.manaraa.com

1

AUTOMATIC TEST DATA GENERATION

FOR REGULAR EXPRESSION PREDICATES

By

Rana Ali Badawi Samhan

Supervisor

Dr. Mohammad Al-Shraideh

Co-Supervisor

Dr. Abedellatef Abu Dalhoom

This Thesis was submitted in Partial Fulfillment of the

Requirements

For the Master’s Degree of Computer Science

Faculty of Graduate Studies

The University of Jordan

August, 2009

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 2

COMMITT DECISION

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 3

DEDICATION

For every moment they prayed for me

For their endless support and patience

To my beloved Parents.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 4

ACKNOWLEDGEMENT

I am greatly expressing my sincere thanks to Allah, my Holy Lord, who was with me in

every moment during my work on this thesis. Allah kindness and mercy gave me the

ability and patience to proceed in bringing this piece of work to being.

I gratefully acknowledge all people who offered any help while working on this thesis.

In particular, I would like to thank my supervisor, Dr. Mohammad Al-Shraideh, who

helped, supported and leaded me during my work, and gave me desirable ideas and

solutions for difficulties and problems.

I would also like to thank my dear friend, Noor Attari, for her efforts in reviewing my

work.

In the last but not the least, I believe that this is the best opportunity to seize to provide

special thanks to my family, who were always there, to support and guide me.

Rana Samhan

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 5

TABLE OF CONTENTS

COMMITT DECISION .. ii

DEDICATION ... iii

ACKNOWLEDGEMENT ... iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

LIST OF EQUATIONS ... ix

TERMINOLOGIES .. x

ABSTRACT ... xi

CHAPTER 1 ... 1

Introduction ... 1

1.1 Overview 1

1.2 Problem Definition 4

1.3 Proposed Technique 5

1.4 Organization of the thesis 6

CHAPTER 2 ... 7

Background and Literature Review .. 7

2.1 Software testing overview 7

2.1.1 Static Analysis .. 7

2.1.2 Dynamic Testing ... 8

2.1.3 Automatic Test Data Generation .. 14

2.2 Regular Expression and State Machine Overview 16

2.2.1 Regular Expression Overview .. 16

2.2.2 State Machine Overview... 18

2.3 Genetic Algorithm overview 20

2.4 Related work in Genetic Algorithm with Software Testing 23

2.5 Related work in Numeric and String Predicates Testing 25

2.6 Related work in Regular Expression Matching 35

CHAPTER 3 ... 36

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 6

Automatic Test Data Generation for Regular Expression Predicates 36

3.1 Introduction 36

3.2 Preprocessing Regular Expression Stage 39

3.2.1 Preprocessing RE that contains OR Operator ... 39

3.2.2 Preprocessing RE that contains Repetition Operator 40

3.3 Genetic Algorithm Stage 41

3.3.1 Regular Expression that contains OR Operator ... 41

3.3.2 Regular Expression that contains Repetition Operator 43

3.4 Case Study 44

CHAPTER 4 ... 48

Exepriments and Resultes ... 48

4.1 Introduction 48

4.2 Experiments Environment 48

4.3 Input Domain 49

4.4 Continuous and Binary Form 49

4.5 Experiments Design 50

4.6 GA Parameters Setup 52

4.7 Metric to record 56

4.8 Experiments 57

Program 1: ... 58

Program2: .. 64

Program3: .. 70

Program4: .. 76

Program5: .. 82

Program6: .. 88

Program7: .. 94

4.9 Analysis and Results 100

CHAPTER 5 ... 104

Conclusion and Future Research .. 104

5.1 Accomplishments and Contributions to the Field 104

5.2 Future Researches 104

References ... 105

Appendix A ... 109

Summary in Arabic .. 123

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 7

LIST OF FIGURES

Figure 2-1: Simple GA Fundamental Mechanism .. 20
Figure 2-2: Single- point Crossover.. 22

Figure 2-3: Simple predicate example .. 25
Figure 2-4: example of string predicate. ... 26
Figure 3-1: Flowchart of the proposed technique. .. 37
Figure 3-2: Subprogram1. ... 44
Figure 3-3: Subprogram 2. .. 46

Figure 4-1: Regular Expression Contains OR operator at the start. 50
Figure 4-2: Regular Expression Contains OR operator at the middle. 50
Figure 4-3: Regular Expression Contains OR operator at the middle. 50
Figure4-4: Regular Expression contains one Closure Operator. 51
Figure 4-5: Regular Expression contains two Closure Operator. 51
Figure 4-6: Expression contains three Closure Operator. ... 51

Figure 4-7: Expression contains Closure Operator and OR Operator. 51
Figure 4-8: The Flow of Experiments: E2 for CF, and E10 for BF, respectively. 60
Figure 4-9: Twenty Experiments for CF and BF in Program1 62
Figure 4-10: The Flow of Experiments: E3 for CF, and E10 for BF , respectively. 66
Figure 4-11: Twenty Experiments and Average Case for CF and BF in Program2. 68

Figure 4-12: The Flow of Experiments: E4 for CF, and E6 for BF, respectively. 72
Figure 4-13: Twenty Experiments and Average Case for CF and BF in Program3. 74
Figure 4-14: The Flow of Experiments: E8 for CF, and E10 for BF, respectively. 78

Figure 4-15: Twenty Experiments for CF and BF in Program 4. 80
Figure 4-16: The Flow of Experiments: E2 for CF, and E5 for BF, respectively. 84
Figure 4-17: Twenty Experiments for CF and BF in Program 5. 86
Figure 4-18: The Flow of Experiments: E5 for CF, and E6 for BF, respectively. 90
Figure 4-19: Experiments for CF and BF in Program 6 ... 92
Figure 4-20: The Flow of Experiments: E9 for CF, and E2 for BF, respectively. 96
Figure 4-21: Experiments for CF and BF in Program 7. .. 98
Figure 4-22: Comparison between the Average of Generation Number in BF and Cf. 102

Figure 4-23: Comparison between the Average of Required Time in BF and Cf. 103

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 8

LIST OF TABLES

Table 2-1: Summary of some special characters for RE .. 17
Table 2-2: Example of finding ED between R=aba and T=cab. 31
Table 2-3: Example of finding OED between R=aba and T=cab. 34
Table 4-1: Sample Experiments for population size=1000 in Program1........................ 52

Table 4-2: Sample Experiments for population size=30 in Program1............................ 53
Table 4-3: Sample Experiments for Program1 using two point Crossover. 53
Table 4-4: Sample Experiments for Program1 using Gaussian mutation. 54
Table 4-5: The Experiments’ parameters and values. ... 55
Table 4-6: Sample Experiments and Average Case for CF of Program 1. 58

Table 4-7: Sample Experiments and Average Case for BF of Program 1. 59
Table 4-8: Sample experiments and Average Case for CF of Program 2. 64
Table 4-9: Sample Experiments and Average Case for BF of Program 2. 65
Table 4-10: Sample Experiments and Average Case for CF of Program 3. 70
Table 4-11: Sample Experiments and Average Case for BF of Program 3. 71
Table 4-12: Sample Experiments and Average Case for CF of Program 4. 76

Table 4-13: Sample Experiments and Average Case for BF of Program 4. 77
Table 4-14: Sample Experiments and Average Case for CF of Program 5. 82
Table 4-15: Sample Experiments and Average Case for BF of Program 5. 83

Table 4-16: Sample Experiments and Average Case for CF of Program 6. 88
Table 4-17: Sample Experiments and Average Case for BF of Program 6. 89

Table 4-18: Sample Experiments and Average Case for CF of Program 7. 94
Table 4-19: Sample Experiments and Average Case for BF of Program 7. 95
Table 4-20: The Average Results for Seven Programs in CF and BF. 100

Table A-1: Twenty Experiments for CF in Program 1. .. 109
Table A-2: Twenty Experiments for BF in Program 1. .. 110

Table A-3: Twenty Experiments for CF in Program 2. .. 111
Table A-4: Twenty Experiments for BF in Program 2. .. 112
Table A-5: Twenty Experiments for CF in Program 3. .. 113

Table A-6: Twenty Experiments for BF in Program 3. .. 114
Table A-7: Twenty Experiments for CF in Program 4. .. 115

Table A-8: Twenty Experiments for BF in Program 4. .. 116
Table A-9: Twenty Experiments for CF in Program 5. .. 117
Table A-10: Twenty Experiments for BF in Program 5 ... 118
Table A-11: Twenty Experiments for CF in Program 6. .. 119
Table A-12: Twenty Experiments for BF in Program 6. .. 120
Table A-13: Twenty Experiments for CF in Program 7. .. 121
Table A-14: Twenty Experiments for BF in Program 7. .. 122

 A

ll
R

ig
ht

s R
es

er
ve

d
- L

ib
ra

ry
 o

f U
ni

ve
rs

ity
 o

f J
or

da
n

- C
en

te
r

of
 T

he
si

s D
ep

os
it

www.manaraa.com

 9

LIST OF EQUATIONS

Equation 2-1: Hamming Distance Function ... 27
Equation 2-2: Character Distance Function. ... 28

Equation 2-3: Edit Distance Function ... 29
Equation 2-4: Ordinal Edit Distance Function. .. 32

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 10

TERMINOLOGIES

ATG Automated Test Data Generator

BF Binary Form of GA

BHD Binary Hamming Distance

CD Character distance

CF Continuous Form of GA

ED Edit Distance

FSA Finite State Automaton

FSM Finite State Machine

GA Genetic Algorithms

HD Hamming Distance

OED Ordinal Edit distance

RE Regular Expression

SM State Machine

SSF Set String Form

TC Test Cases

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 11

AUTOMATIC TEST DATA GENERATION FOR REGULAR

EXPRESSION PREDICATES

By

Rana Ali Badawi Samhan

Supervisor

Dr. Mohammad Alshraideh

Co-Supervisor

Dr. Abedellatef Abu Dalhoom

ABSTRACT

Nowadays, Technology controls most of the areas in our day-to-day life. This

technology, which depends mainly on software components, need to be reliable and

user confident, therefore, it is necessary to concentrate on the testing stage of every

technology, particularly, the software part.

 In this thesis, we first present our new methodology for testing Regular

Expression Predicate. To implement the proposed methodology, we use the state

machine for regular expression recognition, in addition to using branch-testing

technique to test each predicate in the program under test at least once. Finally, we use

genetic algorithm as a search technique to find Test cases that will be used in the

Regular Expression Predicate Testing.

 We implement our proposed methodology using Matlab7.1. We execute seven

programs using two forms: the Continuous and Binary Form. We apply deep analysis

and study on the obtained results from the experiments. We found that the Continuous

GA is faster (need less time) than the Binary GA in finding the Test case that used in

Regular Expression Predicates Testing, while Binary GA need less Number of

Generation to find the Test Case. In all experiments the Test Case was found and the

Regular Expression Predicate was covered. The percentage between the BF Generation

Number and the CF Generation Number is 0.58. On the other hand the percentage

between the CF Required Time and the BF Required Time is 0.24.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 12

CHAPTER 1

Introduction

1.1 Overview

Software Testing is an important stage of software development. It is the process

of executing a program with the intent of finding errors and failure. The main

goal of software testing process is to produce minimum number of test cases

such that it reveals as many faults as possible. Software testing usually accounts

for 50% to 80% of the software development cost (Pallavi et al. 2007), because

producing input test cases is considered as an expensive component in software

testing. The manual techniques are used in industry to generate test cases, but

they are time consuming and labor-intensive techniques, usually resulting into

poor coverage.

Software testing is applied on many levels of software development. These

techniques are different in their nature and objectives (Lu Luo, 2002), and they

include:

a) Unit Testing:

It is the testing that is implemented on the lowest level, which is used to test the

basic and smallest unit of the program. The primary aim of the unit testing is to

take the smallest unit in the program as isolated unit and determine if its

behavior is as expected. As a result, each unit is tested separately before

integrating it with other units.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 13

b) Integration Testing:

It is the testing that is implemented after unit testing, and is used to integrate and

combine the tested units as a group, and determine if its behavior is as expected.

The integrated units are ready for system testing.

c) System Testing :

It is the testing that is applied to the complete integrated system as one unit

system testing, which takes as its input all of the "integrated" software

components that have successfully passed integration testing. Here, the testing

attempts to discover defects that are properties of the entire system rather than of

its individual components.

d) Regression Testing :

It is the testing that is implemented after any modification on the system. It is

considered as a retesting process that is used to ensure the correctness of the

modifications.

e) Acceptance Testing:

It is the testing that is implemented by the user or the customer after the

developer hand over the system to them. The main aim of this testing is to gain

the acceptance of the user rather than to ensure the correctness of the system.

f) Beta testing

When partial or full version of the software is available, the development

organization can offer it free to one or more experienced users or beta testers.

These users install the software and use it as they wish. The aim of this process

is to report any errors revealed during using this version of the software.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 14

Test Data Generation

Software Testing uses the Test data generation to identify a set of test data, which

satisfies given testing criterion (Ruilian and Michael, 2003). Test data generation

techniques are Manual (Static) and automatic (Dynamic).

Static analyzing tools analyze the software under test without executing the code;

it is a limited analysis technique for programs including array references, pointer

variables and other dynamic constructs. Experiments have shown that this kind of

evaluation of code inspections (visual inspections) has found static analysis is

very effective in finding 30% to 70% of the logic design and coding errors in a

typical software symbolic execution. Evaluation is a typical static tool for

generating test data.

In contrast to Static analysis, Dynamic testing tools involve the execution of the

software under test and rely upon the feedback of the software in order to generate

test data. Dynamic testing generator means reduction in time, effort, labor and

cost for software testing (Boyapati, et al. 2002). There are many types of dynamic

test data generators; pathwise, data specification and random test data generator.

Dynamic test data generation is a popular approach to generate test cases that

depends on executing specified programs in order to get needed information to

generate suitable test cases.
A

ll
R

ig
ht

s R
es

er
ve

d
- L

ib
ra

ry
 o

f U
ni

ve
rs

ity
 o

f J
or

da
n

- C
en

te
r

of
 T

he
si

s D
ep

os
it

www.manaraa.com

 15

1.2 Problem Definition

 Predicate based testing is an approach in software testing which tests numerical

predicate in the program that includes simple or compound predicate. This

technique excludes non-arithmetic expressions such as character strings or

regular expressions but it includes Boolean variables, relational expressions, and

Boolean operators, therefore in the thesis we work to find similar approach for

Regular Expression.

Regular Expressions (RE) is one of the components in some programs that need

to be tested, often called a pattern, and Regular Expressions are expressions that

describe a set of strings; they are set of characters that specify a pattern. The RE

are usually used to give a concise description of a set, without having to list all

elements , the functions of it is to check if a particular string matches a given

RE.

In this thesis we aim to test Regular Expressions that are usually located in

predicates with string characters, so we need to present a technique that is used

to test non-numerical predicates e.g. predicates that contains regular expressions.

For example, suppose that a program contains the following condition statement:

If (reg_exp == (a|b)*)

{

 // execution required action

}

Here in this example, the predicate should be executed by finding value for

reg_exp variable, which make the condition true. This input test case must

belong to the language of (a|b)* and accepted in the state machine of RE.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 16

1.3 Proposed Technique

The aim of our research is to test the branches and predicates that contain regular

expression. Our proposed technique combines three main concepts branch testing

technique, Finite State Machine, and genetic algorithm. Branch testing technique

is used to achieve the coverage branch for the program under test, while the Finite

State Machine used to ensure that the test case belongs to the regular expressions

language, and finally, genetic algorithm used as a search technique to find the test

cases for the required branch.

The following steps summarize our proposed technique:

1. Use the branch testing technique to traverse all the branches in the program

under test. If any branch or predicate contains simple or complicated regular

expressions, proceed to the following steps.

2. Construct the state machine that relates to the RE that is in the predicate.

3. Preprocess and manipulate RE such that it will be able to enter GA stage.

4. Apply GA using preprocessed RE from the preceding step.

5. After applying the GA, the output is the test cases that execute the RE

predicate.

6. Pass the TC (string) to the state machine in order to ensure that the output

string belongs to the specified RE.

7. Use the TC in testing the RE predicate.

8. The specified RE branch is executed as a result, and our research aim is

achieved. A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 17

1.4 Organization of the thesis

The rest of the thesis is organized as follows: Chapter 2 gives a brief background of

software testing, regular expression, state machine and genetic algorithms. In

addition we will review some of related work in string testing and regular

expression matching. In Chapter 3 we presents our proposed technique that used to

testing regular expression combined with some of examples that used to illustrate

our techniques in details. Chapter 4 discusses the experiments setup, results, and

analysis. Chapter 5 concludes the thesis work, thesis contributions, and future work.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 18

CHAPTER 2

Background and Literature Review

2.1 Software testing overview

Software testing is the process of analyzing a software item to detect the differences

Between existing and required specifications, and to evaluate the features of the

software item (Alshraideh and Bottaci, 2006). The Software testing should be done

throughout the whole development process.

Techniques that related to software testing are usually classified into two categories:

static analysis and dynamic testing. Static techniques are performed without actually

executing programs. The program source code is reviewed statement by statement.

It uses the program requirements and design documents. In contrast, dynamic testing

techniques execute the program under test on test input data and notice its output.

Usually, the term testing refers to just dynamic testing.

2.1.1 Static Analysis

Static testing is a type of software testing where the software isn't actually used. It is

generally not a detailed testing, but checks mainly for the code syntax, algorithm, or

document, so it is primarily a syntax checking of the code or and manually reading

of the code or document to find errors. This type of testing can be used by the

developer who wrote the code. Bugs discovered at this stage of development are less

expensive to fix than later in the development cycle. Static technique is concerned

with the analysis and checking of system representations throughout all stages of the

software life cycle, it focuses on the range of methods that are used to determine or

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 19

estimate software quality without reference to actual executions. The advantage of

static analysis is the ability to complete the process prior to actual coding; as a

result, it prevents errors to occur before executing the system. Some of static

analysis techniques in this area include code inspection, Code Walkthroughs Desk

Checking, Code Reviews. Code inspections and walkthroughs are the two primary

static analysis methods and they have a lot in common. Inspections and

walkthroughs involve the reading or visual inspection of a program by a team of

people (Lu Luo, 2002).

2.1.2 Dynamic Testing

It is a type used to describe the testing of the dynamic behavior of the code. In

dynamic testing, the software must actually be compiled and run; Actually Dynamic

Testing involves working with the software, giving input test values and checking if

the output variables are as expected. Dynamic testing techniques execute the

program under testing on test input data and observe its output.

Techniques in this area include synthesis of inputs, the use of structurally dictated

testing procedures, and the automation of testing environment generation. Dynamic

testing can apply only after compilation and linking. It may involve running several

test cases each of which may take longer than compilation. It finds bugs only in parts

of the code that are actually executed (Lu Luo, 2002).
A

ll
R

ig
ht

s R
es

er
ve

d
- L

ib
ra

ry
 o

f U
ni

ve
rs

ity
 o

f J
or

da
n

- C
en

te
r

of
 T

he
si

s D
ep

os
it

www.manaraa.com

 20

There are Two Primary classifications of dynamic testing:

• Functional testing (Black box testing)

• Structural testing (White box testing)

Functional Testing

It is a black box testing that depends mainly on the requirements of the system and

does not need to know the internal code of the system. Here, the tester does not

know the internal structure of the item being tested. For example, in a black box test

on software design the tester only knows the inputs and what the expected outcomes

should be and not how the program arrives at those outputs. The tester does not need

any further knowledge of the program other than its specifications. The selection of

test cases for functional testing is based on the requirement or design specification

of the software entity under test. Functional testing emphasizes on the external

behavior of the software entity not the internal source code (Last, Eyal, and Kandel,

2005).

These are some of techniques that in functional testing:

• Equivalence partitioning :

Equivalence partitioning is a software testing technique that divides the input

data of a software unit into partitions of data from which test cases can be

derived. Equivalence classes form a partition of a set that is a collection of

mutually disjoint subsets whose union is the entire set. This technique tries to

define a test case that uncovers classes of errors, thereby reducing the total

number of test cases that must be developed.

The use of this technique usually for two motivations: Sense of complete testing,

and Avoid redundancy. The goal of equivalence class testing is to identify test

cases by using one element from each equivalence class. In this technique there

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 21

are three types of techniques: Weak Equivalence Class Testing, Strong

Equivalence Class Testing, and Traditional Equivalence Class Testing.

• Boundary value analysis:

Boundary value analysis technique focuses on the boundary of the input space to

identify test cases. Usually the boundaries of input and output ranges of a

software component are common locations for errors that result in software

faults. Boundary value analysis assists with the design of test cases that will

exercise these boundaries in an attempt to uncover faults in the software during

the testing process. The expected input and output values should be extracted

from the component specification. The input and output values to the software

component are then grouped into sets with identifiable boundaries. It is

important to consider both valid and invalid partitions when designing test cases.

In this technique, there are three types of techniques Robustness Test Cases

techniques, Worst Case Testing techniques, and Robust Worst Case Testing

techniques.

• Decision table testing:

Decision tables are a precise yet a compact way to model complicated logic.

Decision tables, like if-then-else and switch-case statements, it associates

conditions with actions to perform. Decision tables can associate many

independent conditions with several actions in an elegant way. Decision tables

make it easy to observe that all possible conditions are accounted for. Each

condition corresponds to a variable, relation or predicate.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 22

Possible values for conditions are listed among the condition Alternatives:

• Boolean values (True / False) – Limited Entry Decision Tables.

• Several values – Extended Entry Decision Tables.

• Don’t care value.

Structural Testing

The White box testing (Structural testing) generates the test cases depending on the

knowledge of internal code of the system. It uses the internal perspective of the

system to design test cases based on internal structure. It requires programming

skills to identify all paths through the software. The tester chooses test case inputs to

exercise paths through the code and determines the appropriate outputs. In this

technique, where the software system is viewed as a “white box”, the selection of

test cases is based on the implementation and the source code of the software

system. The goal of selecting such test cases is to cause the execution of specific

code segments in the system, such as specific statements, program branches or

paths. The expected results are evaluated on a set of coverage criteria. Examples of

coverage criteria include path coverage, branch coverage, and statement coverage.

Structural testing emphasizes on the internal structure of the software system

(Sthamer, 1995).

There are several white box (structural) testing criteria:

a) Statement Testing:

Using this testing criterion, every statement will be executed at least once in

the software under test during testing.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 23

b) Branch Testing:

Branch coverage is a stronger criterion than statement coverage. It includes

every possible outcome of all decisions or branch to be exercised at least

once; this means that all control transfers are executed. It includes statement

coverage since every statement is executed if every branch in a program is

exercised once. In the proposed methodology we use the Branch coverage

inorder ensure that each predicate is executed at least one.

c) Path Testing:

In path testing, every possible path in the software under test is executed;

this increases the probability of error detection and is a stronger method than

both statement and branch testing. A path through software can be described

as the conjunction of predicates in relation to the software's input variables.

In Path coverage it is not necessary to cover all predicates in the program.

 These are some of the techniques that are used in structural testing,

including Control flow testing, Data flow testing, and Program Slicing:

Control flow testing

 This technique indicates the order in which the individual statements,

instructions, or function calls of an imperative or functional programs are

executed or evaluated (Sthamer ,1995).

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 24

Data flow testing

This technique uses the control flow graph to explore the unreasonable

things that can happen to data during execution. It includes a family of

test strategies based on selecting paths through the program’s control

flow in order to explore sequences of events related to the status of data

objects.

Program Slicing

It is a decomposition technique that extracts statements relevant to a

particular computation from a program. In general, the program slicing

techniques are used to Program Debugging, Integration, Program

Understanding, Software Maintenance, and Reverse Engineering.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 25

2.1.3 Automatic Test Data Generation

Test Data Generation is a technique that is used to generate test data such that if

the needed test requirements do not stratify, therefore the input test data will be

used to determine how the input test data is close to the specific requirement

(HUANG, 1975).

Some Automatic Test Data Generation techniques are:

• Dynamic Test Data Generation:

 The Dynamic Test Data Generation technique depending on the feedback, the

input test data are gradually modified, until they reach to the required

requirements (B. Korel, 1990). The process of executing program repeatedly

until reaching the required requirements can be reduced as function

minimization, which can be performed using the gradient descent (K. C. Tai,

1996), genetic Search (Michael et al., 2001), and simulated annealing (Tracey

et al.,1998).

Pargas, et al. (1999) classifies the automated test data generation techniques

into random test data generator (Chu H.D, 1996), structural or path-oriented

test data generator (Michael, et al., 1997), goal-oriented test data generator (B.

Korel, 1990) ,and intelligent test data generator (Roper,1995).

• Random Test Data Generation:

It is based on developing test data randomly until the suitable test data is

found (Duran and Ntafos, 1984). Although it is easy to implement, but

randomly generated test data have difficulties in satisfying a specific

requirement, such as domain testing for a predicate border associated with a

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 26

chosen path. In fact, random test data generation performs poorly, and in

general, the Random test data generation is considered no effective on

realistic programs (B. Korel, 1990).

• Symbolic Execution

The basic idea in a symbolic execution system is to allow numeric variables

to take on symbolic values instead of numeric values. However, symbolic

execution is very computational intensive, and a number of technical

problems such as indefinite loops, subprogram calls, and array references and

so on, are met in practice when symbolic execution is performed.

Moreover, if input variables are character string variables, symbolic

expression becomes more difficult to apply Symbolic execution. Because

Symbolic execution requires the systematic derivation of these expressions,

which can take much computational effort, the values of all variables are

maintained as algebraic expressions in terms of symbolic names. The value of

each program variable is determined at every node of a flow graph as a

symbolic formula (expression) for which the only unknown is the program

input value. The symbolic expression for a variable carries enough

information such that, if numerical values are as assigned to the inputs, a

numerical value can be obtained for the variable, this is called symbolic

evaluation.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 27

2.2 Regular Expression and State Machine Overview

2.2.1 Regular Expression Overview

Regular Expression is a set of characters that specify a pattern. It's usually used

when we want to search for specific lines of text containing a particular pattern. RE

can contain both special and ordinary characters. They are used in many

programming languages to search and manipulate text based on patterns. For

example, Perl, Ruby and Tcl have a powerful regular expression engine built

directly into their syntax.

The main functions of them are to check if a particular string matches a given RE, or

if a given RE matches a particular string. One of the main problems of the RE is

find all positions in a string where a RE matches (Kurtz, 2003).

The regular expression is recursively defined as follows (Muzatko, 1996) and

(W.pratt, 4
th

).

1. Individual terminal symbols are regular expressions.

2. ε, Ǿ are regular expressions.

3. If, a and b are regular expressions, then so are:

o a or b, (union)

o ab, (concatenation)

o (a), (parentheses)

o a*, (closure)

4. Nothing else is a regular expression.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 28

The value h(r) of regular expression x is defined as follow (Muzatko, 1996).

1. h (ε) = ε, h(Ǿ) = Ǿ .

2. h(x)= x

3. h(x+y) = h(x) + h(y) where y is regular expression.

4. h (h.x) = h(x). h(y) where y is regular expression.

5. h(x*) = (h(x))*

The following are examples of regular expression:

•••• a|b* : denotes {ε, a, b, bb, bbb, ...}

•••• (a|b)* : denotes the set of all strings with no symbols other than a and

b, including the empty string: {ε, a, b, aa, ab, ba, bb, …}

RE can contain both special and ordinary characters. The ordinary characters like

"a","b", and,"0" are the simplest regular expressions, they simply match themselves.

The special characters like "|" and "*" (Table 2-1 summarizes some of special

characters for RE).

Table 2-1: Summary of some special characters for RE

Special

Character
Effect / Meaning

* Causes the resulting RE to match 0 or more repetitions of the

preceding RE, as many repetitions as are possible.

| A|B, where A and B can be arbitrary REs, creates a regular

expression that will match either A or B.

{m} Specifies that exactly m copies of the previous RE should be

matched; fewer matches cause the entire RE not to match.

. (Dot.) In the default mode, this matches any character except

a newline.

^ (Caret.) Matches the start of the string and in MULTILINE

mode also matches immediately after each newline.

? Causes the resulting RE to match 0 or 1 repetitions of the

preceding RE.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 29

In this thesis, we focus on the two characters, (*) Repetition (Closure) Operator and

(|) Or Operator because they are consider representative character for others, and

they are the most used operator in the regular expression.

2.2.2 State Machine Overview

Finite State Machine (FSM), or finite state automaton (FSA) is an abstract model

composed of a finite number of states, transitions between those states, and actions.

A finite state machine is a model of a machine with a primitive internal memory.

The FSA consists of starting node, one or more final states, and a set of transition

(labeled arcs) from one state to another. State machine is used to recognize character

of string such that, any string that takes the machine from the initial state to the final

state through a series of transition is accepted by this FSA.

There are two type of FSM (Hanif, Ahmed, and Aqdas, 2006)

1. Deterministic FSM (DFSM)

A FSM where for each input event and state there is exactly one transition.

This means that the transition and output functions deterministic, and the

output event and next state are uniquely determined by a single input event.

2. Non-deterministic FSM (NDFSM):

A FSM where for each input event and state there is not exactly one

transition necessarily. In this FSM, the next state depends not only on the

current input event, but also on a number of subsequent input events.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 30

Formal definition

The FSM is defined as a 5-tuple, (Q, Σ, T, q0, F), consisting of:

� A finite set of states Q.

� A finite set of input symbols Σ.

� A transition function T: Q × Σ → P (Q).

� A start state q0 ∈ Q.

� A set of states F distinguished as accepting (final) states F ⊆ Q.

Construction of FSM for RE

There are two techniques to construct the FSM; the first one is Thompson [1968]

construction, which, produces the FSM that has the size linear in the size of

given expressions and does so in linear time. However, it also gives machines

that have at most two transitions into and at most two out of each state.

A second construction method that is older than Thompson’s construction is

Glushkov construction it is a two-step Process. First, inductively compute three

sets of symbols and then, second, compute the machine directly from these sets

 (Hanif, Ahmed, and Aqdas, 2006).

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 31

2.3 Genetic Algorithm overview

Genetic Algorithms (GAs) were invented by John Holland in the 1960s and were

developed by Holland and his students and colleagues at the University of Michigan

in the 1960s and the 1970s (Mitchell, 1999). It is an optimization and search

technique based on the principles of genetics and natural selection, inspired by

Darwin's theory about evolution. GA begins with population of randomly generated

chromosomes, each chromosome is considered as a candidate solution to the

problem being solved, and advances towards better chromosome by applying

genetic operators based on the genetic processes occurring in nature. Each state of

population is called generation. For each chromosome at every generation there is a

fitness value, which indicates the goodness of the solution, represented by the

chromosome values. Based on these fitness values (cost), the evaluation and the

selection of the chromosomes are done, which is used to generate the new

generation .The new chromosomes are created using genetic operators such as

crossover and mutation(Abo-Hammour,2002).

Figure 2-1: Simple GA Fundamental Mechanism

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 32

Figure 2-1 explained the main steps for the genetic algorithm, which is listed below:

1. Initialization

An initial population is randomly generated. The population consists from a set of

individuals (chromosomes). Each chromosome contains a group of genes. Each

gene represent variable in the potential problem.

2. Evaluation

It involves a function which is called objective function, used to rate the candidate

solutions quality. This is the only single measure of how good a single

chromosome is compared to the rest of the population. The fitness value is a

nonnegative measure used for maximization or minimization purpose. In this

thesis, we used it for minimization purpose. The cost function estimates the

number of search operations that need to transform the candidate solution into the

optimal solution. The main fitness function that we focus on it in thesis is the

OED, which discuss later in this chapter.

3. Selection

In this step, the chromosomes are chosen from the current population in order to

create new children for the next generation. The smaller fitness function value, the

higher probability of the chromosome to contribute one or more children in the

next generation. Usually the ranking operation happened for the chromosome then

the selection operation occurred selection method according to specific techniques.

In our implementation we use the stochastic uniform, lays out a line in which each

parent corresponds to a section of the line of length proportional to its scaled

value. The algorithm moves along the line in steps of equal size. At each step, the

algorithm allocates a parent from the section it lands on. The first step is a uniform

random number less than the step size (Haupt, 2004).

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 33

4. Crossover

In this step, each pair of chromosomes are taken and cut at some randomly chosen

point to produce two segments in each chromosome then segments from different

chromosome are swapped over to produce two new full-length chromosomes, which

called children. Children inherit some genes from each parent and have new

structures compared to those of their parents. We implement our proposed technique

using Single-point crossover (Chen, 2002).

Figure 2-2: Single- point Crossover.

Figure 2-2 illustrates the single crossover operation which mainly depend on

randomly choose cut of point and then exchanging the genes of the two

chromosomes after the cut point.

5. Mutation

This step is applied after the selection and crossover operation. It is used to apply

changes at chromosomes individually by making changes in some chromosome in

order to ensure genetic diversity within the population. In our implementation we use

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 34

Uniform mutation method which in Continues GA includes two steps. The first one

is Selects a fraction of the vector entries of an individual for mutation, where each

entry has a probability Rate of being mutated. In the other hand the second step, the

algorithm replaces each selected entry by a random number selected uniformly from

the range for that entry. In Binary GA the first step as in the Continues GA while in

the second step is different such that, the selected bits are inverted to other bits

(Chen, 2002).

6. Termination

It is the step where the GA is terminating when some criterion is met such that

maximum number of generation reached or the cost equal zero.

2.4 Related work in Genetic Algorithm with Software Testing

In literature, GA was used to solve many complicated problems in the computer

science. One of these problems is software testing, such that GA helps in finding

Test cases that is used in testing purpose.

Sthamer (1995) studied the use of GA as a Test Data Generator for structural

testing.

Michael et al. (1997), performed experiments to compare between the random test

data generation and genetic search for test data and demonstrated that genetic

approaches outperform the random search in the more difficult setting.

Khor and Grogono (2004), introduced genet an Automated Test Data Generator

(ATG) to generate test data for branch coverage.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 35

Alzabidi, Kumar, and Shaligram (2009) proposed GA with different parameters

combinations used to automate the test data generation for path coverage. The

investigation involves crossover strategies and methods of selecting of parents for

reproduction and mutation rates. The results of the study showed that double

crossover was more successful in path coverage. The study results Also that,

selecting parent for reproduction according to their fitness is more efficient than

random selection.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 36

2.5 Related work in Numeric and String Predicates Testing

As we mentioned previously, there are predicate testing techniques that are

concerned with numeric predicates, which are used to compare numbers as

illustrated in the example below in Figure 2-3:

Figure 2-3: Simple predicate example

In this example, we can use the Automatic methods, which aim is use the

information that is gained by execution of the program under test. The most basic

Automatic method is Random Test Data Generation technique and Dynamic Test

Data Generation.

In Random Test Data Generation technique, test data is generated randomly. Each

test case is then executed and either considered or discarded according to whether it

executes the predicate goal. In this technique, the probability that a randomly

generated input will set the variable to be equal to 0 may be very small. In general,

random test data generation performs poorly and is generally considered ineffective

at covering all branches in realistic programs (Zhao and Lyuv, 2003). In dynamic

test data generation, if some desired test requirement is not reached, data generated

in each test execution is used to identify how close the test input is to meeting the

requirement. With the aid of feedback, test inputs are gradually modified until one

of them satisfies the requirements using function minimization.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 37

Also in numeric predicate testing, we can use Heuristic search techniques such as

genetic algorithms and simulated annealing, which are high-level frameworks,

which use heuristics to find solution without need to perform a full exhaustive

enumeration of a search space. In fact, many test generation techniques are based

around some notion of the coverage of the code. This coverage can be measured

and incorporated into an objective or cost function. Better test values should be

rewarded with lower cost values, whereas poorer test values should be related to

higher cost values. With feedback from the cost function, the search looks for better

tests based on a heuristic evaluation of existing tests. In the previous numeric

predicate, the cost function is (y – 20). Finding the value 20 of the cost function

where y=20 is a required solution to achieve the predicate (Alshraideh, 2007).

Another predicate in the program that we usually need to test is the non-Numerical

data types, including the string data type and regular expression.

String predicates take around 6% of expression predicates in programming

language (Alshraideh, 2007). The following Figure 2-4 illustrated an example of

string predicate.

Figure 2-4: example of string predicate.

The problem is to find an input string (S) so that the required branch is executed. If

the branch is not executed, a cost is associated with S. This cost is used to guide the

search as we mentioned in the numeric branch. Given the use of a particular search

technique such as a genetic algorithm, a key problem is how to compute a useful

cost for this predicate failure. For example, for two test cases s1 = "Masor" and,

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 38

s2 = "Naster". The problem is to find which one, if any, should have the lower cost.

Until the problem of a cost function for string equality is solved, it overly reduces

software testing approaches for applications in practice, since string predicates are

widely used in programming. Some of the string equality cost a function that is

used in branch string testing is Binary Hamming distance (BHD), Character

distance (CD), Edit distance (ED) and Ordinal Edit Distance (OED) (Alshraideh,

2007). We will concentrate on the OED fitness function, which we adapted in our

proposed methodology.

• Binary Hamming Distance (BHD)

It is a fitness function that is used to find the number of bits that is different

between Two-bit vectors (strings). This representation could be used for

character strings by simply working with the underlying bit representation of

each character. Once each string is converted to a bit string by concatenating the

bit patterns of each character, the Hamming distance of two equal length strings

may be easily computed.

The HD function was extended to deal with unequal length strings, so that any

bits in one string that extend beyond the length of the shorter string are counted

as mismatched. More formally, the distance between two strings A and B as

shown in Equation 2-1:

Equation 2-1: Hamming Distance Function

Where minlen, maxlen are the minimum length and maximum length of string A

and B, Ai and Bi are bits number, i and j is XOR operator.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 39

The BHD has limitations and problems. Some of them are that in some cases the

solutions can be close to each other in decode solution space (character

representation), but are far apart in the encoded binary representation.

Another problem is the maximum number of fitness values it can produce,

which is (7 * maxlen), where maxlen is the maximum length of the two strings

compared, taken in consideration that we can produce more than these test cases.

• Character Distance (CD)

It is a fitness function where characters may be mapped into an ordinal space

according to each character's ordinal value ASCII Code. It represents the sum of

the absolute differences between the ordinal character values of corresponding

character pairs. For strings of unequal length, any character without a

corresponding character increases the cost by 128 degree (represent insert new

character).

Let string s = s0s1 … sk-1 be of length k where Si is the ordinal value of the ith

character. Similarly, let string t = t0t1… tl-1 is a string of length k<= l then the

character Distance function is shown in Equation2-2:

Equation 2-2: Character Distance Function.

• Edit Distance (ED)

ED is defined as the process of specifying the minimum number of point

mutations required to transform a string (A) into another string (B).

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 40

The edit or mutation operations are:

1. Substitution a letter.

2. Insert a letter.

3. Delete a letter.

For example, the edit distance between "master" and "manar" is 3, since the

following three edits change one into the other, and there is no way to do it with

fewer than three edits:

1. master → masar (substitution of 'n' for 's')

2. masar → mastar (insert 't' after 's')

3. mastar → master (substitution of 'a' for 'e')

The edit distance function is defined by the recurrence relation below where s: a,

t : b are character strings, each consisting of a possibly empty string s, t,

followed by the character a, b. the ED function shown in Equation 2-3.

Equation 2-3: Edit Distance Function.

The edit distance of two characters is one unless they are equal, in which case it

is zero. The edit distance of an empty string and a given string is the length of

the given string.

The algorithm implementation for computing the Levenshtein distance involves

the use of an (n + 1) × (m + 1) matrix , where n and m are the lengths of the

regular expression R, and the string T.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 41

Description of Edit Distance Algorithm

Step 1:

Set n to be the length of R.

Set m to be the length of T.

If n = 0, return m and exit.

If m = 0, return n and exit.

Construct a matrix containing 0...m rows and 0...n columns.

Step2:

Initialize the first row to 0...n.

Initialize the first column to 0...m.

Step3:

Insert each character of R (i from 1 to n).

Step4:

Insert each character of T (j from 1 to m).

Step5:

If R[i] equals T[j], the cost is 0.

If R[i] does not equal T[j], the cost is 1.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 42

Step6:

Set cell d[i,j] of the matrix equal to the minimum of:

a. The cell immediately above plus 1: d[i-1,j] + 1. (Deletion)

b. The cell immediately to the left plus 1: d [i,j-1] + 1. (Insertion)

c. The cell diagonally above and to the left plus the cost: d [i-1, j-1] + cost

(Substitution).

Step7:

After the iteration steps (3, 4, 5, and 6) are complete, the distance is

found in cell d [n, m].

Example for ED:

Let R=aba, T=cab.

We apply the ED inorder to find the differences between R and T.

Table 2-2: Example of finding ED between R=aba and T=cab.

 a b a

 0 1 2 3

c 1 0 1 2

a 2 1 1 1

b 3 2 1 2

The ED = 2 which is the bottom right most corner.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 43

• Ordinal Edit Distance (OED):

Ordinal Edit distance defined as the process of specify the minimum number of point

mutations required to transform a string (A) into another string (B). Considering the

ASCII Code of each characters such that the minimum number of character express

using ASCII code instead of the number of characters.

The edit distance function can be modified to take account of the difference in

character values whenever a character is substituted. The edit distance of two

characters can be taken to be equal to the absolute difference in their ordinal values.

The ordinal edit distance (OED) could thus be defined as the following Equation:

Equation 2-4: Ordinal Edit Distance Function.

Where k is the insertion or deletion cost and a, b in |a – b| are interpreted as ordinal

values.

Here, in OED the cost of insertion, k, was chosen to be 128. Given that any match

that can be achieved by an insertion into one string can also be achieved by a

deletion in the other, the cost of deletion was also chosen to be 128, instead 1 of

insertion and deletion in ED.

Using 128 as the cost of insertion and deletion, however, gives OED (XMaster,

Master) = 128 and yet OED (Master, Thesis) = 6 which is too low since the search

Effort required to match (Master, Thesis), six substitutions, should be higher than the

effort to match XMaster, Master, a single deletion. The problem is that substitution

costs become unreasonably low as corresponding character values approach each

other. The low, non-zero substitution costs were therefore offset away from zero

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 44

while retaining the maximum cost at 128. This was done by setting the substitution

cost to be 128/4 + (3*|a – b)|/4 when |a - b|> 0 and zero otherwise.

The OED, which depend on the ASCII code in calculation the cost of RE matching.

The algorithm implementation for computing the Levenshtein distance involves the

use of an (n + 1) × (m + 1) matrix , where n and m are the lengths of the regular

expression r, and the string s.

Description of Ordinal Edit Distance Algorithm:

Set r to be the regular expression.

Set s to be the string, which will compare with r.

Set n to be the length or r.

Set m to be the length s.

Construct a matrix containing 0…m rows and 0...n columns.

Step1:

Initialize the first rows to 0,128…n*128.

Initialize the first column to 0,128…m*128.

Step 2:

Insert each character of r (i from 1 to n).

Insert each character of s (j from 1 to m).

Step3:

If s[i] equals t[j], the cost is 0.

If s[i] does not equal t[j], the cost is 128/4 + (3*|a – b)|/4 .

Step4:

Set cell d [i, j] of the matrix equal to the minimum of:

� The cell immediately above plus 128: d [i-1, j] +128. (Deletion)

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 45

� The cell immediately to the left plus 128: d [i, j-1] +128.(Insertion)

� The cell diagonally above and to the left plus the cost: d [i-1, j-1] + cost.

(substitution)

Step5:

After the Steps 2, 3, 4 are complete the distance is found in cell d [n, m] the

right bottom cell.

Example for OED:

Let R=aba, T=cab. We apply the OED inorder to find the differences taking in

consideration the ASCII code between R and T.

Table 2-3: Example of finding OED between R=aba and T=cab.

 S a (97) b (98) a (97)

T 0 128 256 384

(99) c 128 33.50 160.75 288.75

(97) a 256 128.00 66.25 160.75

(98) b 384 256.00 128.00 99.00

The OED =99.00 which is the bottom right most corner.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 46

2.6 Related work in Regular Expression Matching

Muzatko (1996) proposed an algorithm, which is extended the hamming, and edit

distance fitness function. The proposed algorithm constructs FSM that accepts

strings with up to a defined number of mismatches. The algorithm constructs a non-

deterministic machine containing l copies of the regular expression machine where l

is the maximum number of mismatches to be detected but the algorithm complexity

is exponential which is O(2
lk

) in the worst case.

Alshraideh and Bottaci (2006) presented a proposed cost function that used the FSM

to parse the given string to check its membership of the regular set. Instead of finite

state machine producing a simple accept or reject output, however, the machine

computes a cost by counting mismatched state transition. The complexity of the

algorithm is O (2
k
).

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 47

CHAPTER 3

Automatic Test Data Generation for Regular Expression

Predicates

3.1 Introduction

In this chapter, we present the proposed methodology, which relates to testing

regular expression predicates in the program under test. Before proceeding in the

methodology, it is important to mention that Regular expression Predicates occupy

about 5% from 6% of string predicates in programming language (Alshraideh, 2007)

 Which mean that they have an existence in the languages therefore, we try studying

them, inorder discover techniques used to testing these predicates.

We use the branch testing, state machine and genetic algorithm inorder to achieve

our research aim.

In chapter 1, we presented brief steps of our proposed technique, in this chapter; we

discuss these steps in more details. Figure 3-1 below represents the flowchart of the

proposed technique.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 48

Figure 3-1: Flowchart of the proposed technique.

Figure 3-1 lists the main six steps in the proposed methodology. The first step is to use

the branch testing technique, which, is used to execute each branch in the program

under test at least once. This step is followed by constructing the FSA of the Regular

Expression that is locates in predicate, then RE preprocessed such that is differentiated

according to the type of RE that it contains. The Regular Expression is simplified to a

set of string form (SSF), inorder use these strings in GA, to be more specific, in the

fitness function, as we proposed in our technique ((Illustrated in detail later)).

After simplifying the Regular Expression, the Genetic Algorithm is executed using the

SSF and the proposed fitness functions. When the Test Case (TC) is discovered, it

passed to the state machine, to ensure that the string belongs to the language of the RE.

Finally, the TC is used to accomplish our aim in testing the Regular Expression

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 49

Predicate. Chapter 3 concentrates on two stages: the Preprocessing Regular Expression

stage and Genetic Algorithm stage, because other stages were discussed previously in

Chapter 2.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 50

3.2 Preprocessing Regular Expression Stage

Input: Regular Expression (RE).

Output: Set of string forms (SSF) that equal to the Regular Expression.

 Preprocessing Regular Expression stage is responsible for simplifying the RE, and

transforming the RE into another form that is equal to the RE form.

In the proposed method, we focus on the two mainly special characters in regular

expression syntax, which are:

• OR Operator (|) which described in Table 2.1.

• Repetitions of the preceding RE (*) also described in Table 2.1.

3.2.1 Preprocessing RE that contains OR Operator

OR Operator is one of the most used characters in the Regular Expression

syntax. It is used to match either RE1 or RE2 with the rest of RE.

In this stage, we manipulate this RE as follows:

OR Operator (|) concatenates the rest of RE with one left or right character, not

both of them , so as a result, the set of string form contains the rest of regular

expressions concatenate with right side or with left side of the OR Operator ,

regardless of the length of the TC .

In other words, if we have the following regular expression, the set of string will

be as follows:

RE: a(a|b)a

SSF: {aaa, aba}.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 51

As we see in this example, the proposed technique converts the RE to another

equal form, which is a string form that facilitates testing of RE predicate, and let

GA used it as an input set. Here in this point we should concentrate on that all

the strings that belong to the SSF also belong to the language of regular

expression and should be acceptable at RE finite state machine.

3.2.2 Preprocessing RE that contains Repetition Operator

The Repetitions Operator also is considered one of the most used characters in

the Regular expression syntax. As we mentioned previously, it causes the

resulting RE to match 0 or more Repetitions of the preceding RE, as many

Repetitions as are possible.

In this stage, we manipulate this character as following:

Repetitions Operator (*) means 0 or more Repetitions of the preceding

character. As a result, the set of string form contains zero Repetitions of a

character and repeats a character more and more until we reach to the length of

the TC (max length). In other words, if we have the following regular

expression, the set of string will be as follows:

Consider that the length of Test Case = 6.

RE: ab*

SSF: {a, ab, abb, abbb, abbbb, abbbbb}.

As we noticed in the previous example, the proposed technique converts the RE

to another equal form, which is a SSF to facilitate testing RE predicate and using

it in GA, as we will see later in this chapter. It worth mentioning that all the

strings that belong to the SSF also belong to the language of regular expression,

and it is also acceptable in the FSA of the RE.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 52

3.3 Genetic Algorithm Stage

Input: SSF.

Output: The TC for testing RE predicate.

As illustrated in chapter 2, GA contains a set of steps. In this section, we mainly

focus on the evaluation step of GA, inorder to present our proposed fitness function

that we used in the two cases of testing regular expression that we previously

discussed. We implemented the GA in Continuous GA Form (CF) and in the Binary

GA Form (BF).

Evaluation Step in GA:

This step is used to evaluate the chromosomes, using fitness function, which is a

function used to evaluate the degree of goodness of the chromosomes. The fitness

function that we used in our implementation for GA is OED, which was illustrated

in Chapter 2.

In our proposed technique, we customize the OED such that the output from the

Preprocessing Regular Expression stage that is SSF used as input for the OED

fitness function (Genetic Algorithm Stage).

3.3.1 Regular Expression that contains OR Operator

In GA stage for OR Operator, we will use the proposed OED to find the costs

value to the Chromosomes. The OED as we illustrated used to calculate the cost

(differences) between two string that are TC and String. Therefore we apply the

OED for each string in the set string form (SSF) that result from " Preprocessing

Regular Expression Phase " with the TC inorder find the fitness value for each

pair (each string in SSF and TC) , and then find the minimum value of the costs

between all them.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 53

Let SSF= {S1, S2}, STR=Sn, and COST

Then find: OED (S1, Sn), OED (S2, Sn)

After that find: COST = MiN (OED (S1, Sn), OED (S2, Sn))

Where SSF= set string form.

 STR = Test Case (string).

 COST=the cost of matching RE with string.

Example:

RE=a(a|b)a and STR=aba.

SSF= {aba, aaa}

OED (aaa, aba) = 32.75

OED (aba, aba) = 0

COST = MiN (OED (S1, Sn), OED (S2, Sn))

COST = MiN (32.75, 0).

Then COST=0.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 54

3.3.2 Regular Expression that contains Repetition Operator

In RE which include Repetition Operator , we apply OED for each String SSF

that result from “Preprocessing Regular Expression Phase "with the TC , in

order find the cost for each pair, and then find the minimum value of the costs

between all pairs.

Let SSF= {S1, S2, S3…, Si}, STR=Sn, and COST

Calculate: OED (S1, Sn), OED (S2, Sn), OED (S3, Sn)… OED (Si, Sn)

Then find: COST = MiN (OED (S1, Sn), OED (S2, Sn), OED (S3, Sn)… OED

(Si, Sn)).

Where SSF= set string form.

 STR =test case (string).

 COST=the cost of matching RE with string.

Example:

RE=ab* and STR=abbbb.

SSF= {a, ab, abb, abbb, abbbb}

OED (a, abbbb) = 512

OED (ab, abbbb) =384

OED (abb, abbbb) =256

OED (abbb, abbbb) = 128

OED (abbbb, abbbb) = 0

COST = MiN (OED (S1, Sn), OED (S2, Sn), OED (S3, Sn)… OED (Si, Sn)).

COST = MiN (512, 384, 256, 128, 0).

Then COST=0.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 55

3.4 Case Study

In this section, we present two cases studies, one for OR Operator and second for

Repetitions Operator. There are two Case study Case 1 for OR Operator predicate as

shown in Figure 3-2, and Case 2 for Repetitions Operator as we observe in Figure

3-3. We will apply our proposed method in these two programs.

Case1:

Figure 3-2: Subprogram1.

The proposed methodology applied to Program 1 as Follow:

• Traverse Program1 inorder finding the RE predicate P1.

If (STR=a (a|b))

{

 C=C+1

}

• Using the branch testing technique to ensure the execution of RE predicate at

least one.

• Construct the FSA that relates to the RE predicate.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 56

• Preprocessing RE.

SSF = {ab, aa}

• Apply GA using preprocessed RE and proposed OED.

SSF= {ab, aa}

Let chosen individual in GA in specified generation = ac.

Then, calculate the fitness value using the proposed OED.

OED (ac, ab) = 32.7500

OED (ac, aa) = 33.5000

COST = MIN (OED (ac, ab), OED (ac, aa))

COST = MIN (32.7500, 33.5000).

However, COST Not equal 0, then continuo to followed generation.

 In the following generation Let chosen individual in GA = ab

Then calculate the fitness value using the proposed OED.

OED (ab, ab) = 0

OED (ab, aa) = 32.7500

COST = MIN (OED (ab, ab), OED (ab, aa))

COST = MIN (0, 32.7500).

Then COST = zero, the TC that execute P1 is ab.

• Ensure that TC belongs to the RE using FSA

 TC= ab

 Traverse FSA using TC =ab, and the TC reached to the final state.

• Using TC, STR = TC and then execute P1 in Program1.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 57

Case2:

Figure 3-3: Subprogram 2.

 The proposed methodology applied to Program 2 as Follow:

• Traverse Program2 inorder finding the RE predicate P1.

If (STR=aa*b)

{

 c=c+1

}

• Using the branch testing technique to ensure the execution of RE predicate at

least one.

• Construct the FSA that relates to the RE predicate.

• Preprocessing RE regarded to the Max length of the TC.

aa*b= {ab, aab, aaab, aaaab, aaaaab}

• Apply GA using preprocessed RE and proposed OED.

SSF= {ab, aab, aaab, aaaab, aaaaab}

Let candidate individual in GA in specified generation to be = aaaab

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 58

Then, calculate the fitness value using the proposed OED.

OED (aaaab, ab) = 384

OED (aaaab, aab) = 256

OED (aaaab, aaab) = 128

OED (aaaab, aaaab) = 0

OED (aaaab, aaaaab) = 128

COST = MIN (384, 256, 128, 0,128) = 0

COST = 0 the TC where the fitness value equal 0 is founded.

TC = aaaab

• Ensure that TC belongs to the RE using FSA

 TC= aaaab

 Traverse FSA using TC = aaaab, and the TC reached to the final state.

• Using TC, STR = TC and then execute P1 in Program 2.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 59

CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Introduction

In chapter 4, we present our implementation and experiments that simulate our

proposed methodology. The implementation includes Preprocessing Regular

Expression Stage (Testing Regular Expression Techniques) and Genetic Algorithm

Stage (The proposed fitness functions). As we mentioned previously, we implement

the GA in two forms: Continuous GA and Binary GA. The chapter also presents a

comparison between the Binary and Continuous implementation followed by the

experimental result and analysis.

4.2 Experiments Environment

The experiments are conducted on Matlab 7.1. Using Genetic Algorithm, Direct

Search Toolbox, and M-files concept. We run the experiments on a PC that run

under windows operating system, with the following system specifications:

Manufacturer: DELL.

Processor: Intel(R) Core (TM) 2 Dou CPU T6400 @ 2.00 GZ.

 Memory (RAM): 2:00 GZ.

 System Type: 32 bit Operating system.

System Type: 32 bit Operating system.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 60

4.3 Input Domain

The domain that we used in the implementation was [65,122]. The domain

combined two ranges the ASCII codes for the small letters that is [97,122] and , the

ASCII codes for the capital letters , which is [65,90]. The sub range from [66, 96] is

represents some other printable characters e.g. (_).

4.4 Continuous and Binary Form

The proposed technique was implementing in two forms of GA: the Binary Form

(BF) and Continuous Form (CF).

Binary Form that is a GA, which deals with population as, set bits. In this form the

chromosomes contains just zero and one bits therefore; it should be exist an

encoding and decoding methods to transform individuals from binary to decimal

values and vice versa. This GA usually used when the variables are naturally

quantized and not too large bits needed like variable used to full machine precision

(floating- point) which need many numbers of bits to represent it (Haupt, 2004).

Continuous GA represents chromosomes as decimal value that means we used it

when the number of variables is large and when the application care about accuracy

of vales such that floating point. In this GA we need not to use encoding and

decoding methods. The main advantage of CF that is requiring less storage than the

Binary GA, also CF is inherently faster than the Binary GA, because the

chromosomes do not have to be decoded prior to the evaluation of the cost function

(Haupt, 2004).

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 61

4.5 Experiments Design

The Experiments include Continuous and Binary Form. At each form we have

conducted 7 different experiments, which covers some possible scenario using both

Repetition (*) and OR (|) operator.

The seven predicates are using the proposed fitness function to match a String with

a Regular Expression that contains:

1. OR Operator (|) at the start of RE as shown in Figure 4-1.

Figure 4-1: Regular Expression Contains OR operator at the start.

2. OR Operator (|) at the middle of RE shown in Figure 4-2.

Figure 4-2: Regular Expression Contains OR operator at the middle.

3. OR Operator (|) at the end of RE as shown in Figure 4-3.

Figure 4-3: Regular Expression Contains OR operator at the middle.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 62

4. One Repetitions Operator (*) as shown in Figure 4-4.

Figure4-4: Regular Expression contains one Closure Operator.

5. Two Repetitions Operator (*)as shown in Figure 4-5.

Figure 4-5: Regular Expression contains two Closure Operator.

6. Three Repetitions Operator (*) as shown in Figure 4-6.

Figure 4-6: Expression contains three Closure Operator.

7. A Closure Operator (*) and OR Operator (|) as shown in Figure 4-7.

Figure 4-7: Expression contains Closure Operator and OR Operator.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 63

4.6 GA Parameters Setup

In using GA, the values of GA parameters must be set up before hand. Selection

of these values was subject to trial-and-error practice. Initially, GA parameters are

set to the values that are mostly used and considered promising in the previous

related works. Gradually, based on the feedback from one experiment, parameters

are refined in subsequent experiments.

The followings are the parameters that we use in the implementation of GA:

• Population Size:

It is used to determine the size of the population at each generation.

Increasing the population size enables the GA to search more points and

thereby obtain better results. However, the larger the population size, the

longer the genetic algorithm takes to compute each generation. The

population size in the implementation in two forms equal 100 individuals.

The 100 individual was suggested depend on previous work in GA fields

(Alshraideh, 2007). The 1000 individual was tested as shown in Table 4-1;

in this case the TC found with less Required Time and Generation Numbers,

however, it needs high computation and more resources to use. In addition,

The 30 population size is tested as shown in Table 4-2, and found that, the

TC is found with more Required Time and Number of Generations than in

the 100 population size.

Table 4-1: Sample Experiments for population size=1000 in Program1.

Exp

 No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E1 ababba 5 2.0592 131.3 minimum fitness

limit reached

E2 bbabba 12 4.2900 38.42 minimum fitness

limit reached

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 64

Table 4-2: Sample Experiments for population size=30 in Program1.

Exp

 No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E1 ababba 1775 56.6908 33.2 minimum fitness

limit reached

E2 bbabba 2621 98.5926 33.33 minimum fitness

limit reached

• Initial Population Range:

The Genetic Algorithm usually produces a random initial population using

creation function. The initial range that we used in our implementation is

[65,122] for CF and (0, 1) for BF.

• Selection Method:

The selection function that we adopted in the implementation of BF and CF

is stochastic uniform which described in chapter 2.

• Crossover Method:

The Single point crossover method is used in our implementation that

discussed previously in chapter 2. We tested the two point crossover method

as shown in Table and found that the Single and the Two point Crossover

approximately need the same Required Time and Number of Generations.

Table 4-3: Sample Experiments for Program1 using two point Crossover.

Exp

 No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E1 ababba 377 18.6889 32.98 minimum fitness

limit reached

E2 bbabba 320 11.7001 33.77 minimum fitness

limit reached

 A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 65

• Crossover Probability:

It is used to specify the fraction of the next generation, other than elite

children, that are produced by crossover. In our implementation the

Probability that chosen to use is 0.8 which is the default Probability of

Crossover method in Matlab 7.1.

• Mutation Method:

In our implementation in each of BF and CF we use a Uniform mutation

method that we describe it previously. We tested other Mutation Methods

e.g. Gaussian mutation as shown in Table 4-4 , and found that it needed

large Number of Generation compare to Uniform mutation and in some

experiments the generations reach up to 10000 (the second termination

reason) without find the solution (TC).

Table 4-4: Sample Experiments for Program1 using Gaussian mutation.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E1 Qbabba 10000 785.3558 195.8 reached 10000

Generations

• Mutation Rate:

It is a rate, which is used in Mutation Method as probability Rate for the

mutation process. In the implementation we suggest to use the default value

of Rate which is 0.1.

• Number of Variables:

A parameter represents the number of genes in the chromosome. In our

method, it equals the length of string in SSF. In the first three experiments

that related to OR Operator it, equal 6, while in the rest of the experiments,

which used Repetitions Operator it,'s randomly generated from 1 to 6.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 66

• Chromosome:

It consists from a set of genes. In our implementation, these genes are the

ASCII code of characters in CF; in the other hard they are the bits 0 or 1,in

the BF , that represent the underlying Binary representation for characters.

The length of the chromosome depends on the number of variable

parameters.

• Stopping Criteria Parameters:

The Stopping Criteria in our implementation are:

1. Finding the solution such that the fitness value equal zero.

2. Maximum number of generations equal to 10000.

In below Table 4-5 summarizes the parameters of our implementation and its

values.

 Table 4-5: The Experiments’ parameters and values.

No Parameter Continuous Binary

1 Population Size 100 100

2 Initial Population

Range

[65,122] (0,1)

3 Selection Method Stochastic Uniform Stochastic Uniform

4 Crossover Method Single Point Single Point

5 Crossover probability 0.8 0.8

6 Mutation Method Uniform Uniform

7 Mutation Probability 0.1 0.1

8

Number of Variables

(genes)

• 6 characters in or

operator.

• Randomly

generated in

repeation operator.

• 42 bits in or

operator.

• Randomly

generated in

repeation operator

9 Stopping Criteria • Cost = 0

• Max Gen. No

= 10000

• Cost = 0

• Max Gen. No

= 10000

These parameters were chosen to be suitable for all experiments in the

Continuous and Binary GA.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 67

4.7 Metric to record

The following pieces of information are very important to be noticed in every

experiment for each generation, in order to assess the experiment outcomes.

• Generations Number: The numbers of generations needed to find the

solution.

• Time: The time needed to find the solution.

• Best f(x): Best fitness function value (the minimum one) where in the

experiments all the fitness value equal to 0 in two forms.

• Mean f(x): Mean fitness function value.

• GA Termination Reason: Usually the GA terminates when we find the

solution, but also we can terminate it manually using stop button.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 68

4.8 Experiments

We conducted the following programs in each form: Continuous and Binary for 20

times , and we noticed the five metrics that we discussed in the previous section,(The

number of Generations, Required Time, Best f(x), Mean f(x), and GA Termination

Reason for each time). (The obtained result for 20 experiments for each form is

shown in detail in Appendix A).

In the seven programs, we will convert the RE to a set of strings form (SSF). Our aim

in these experiments is to find the Test Case that belongs to SSF and execute the RE

predicates e.g. the predicate is covered.

In each of the following programs we will present sample experiments about each

form, and describe them in details, after that we show two diagrams for each form,

that illustrate the flow of sample experiments from the starting point until it reaches

the end point, where the cost equal 0 such that the Best f(x) for all experiments in

two forms where equal 0. In the upper part of these diagrams, the generation number

is located on the x-axis and the fitness values on the y-axis. Also, in the lower part

of these diagrams, there are two axes; the x-axis that represents the number of

variables in best individual, and the y-axis that represents the current representation

of best individual. Finally, we observed and noticed two charts that display the

results of 20 experiments of the programs in the CF and BF. The x-axis in these two

charts represents the 20 experiments from E1 to E20 and the Average case; while, the

y- axis represents the generation number (black column) and the required time (gray

column) for the experiments.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 69

 Program 1:

Testing a Regular Expression that includes OR Operator (|) at the start position of RE

using the proposed OED fitness function (Predicate 1). In Program 1, the Regular

Expression is RE = a|bbabba. The SSF is {ababba, bbabba}. The discovered TC should

belong to SSF and execute Predicate1 which is shown in Figure 4-1 in section 4.5.

Table 4-6 describes the obtained results of sample experiments of CF Program 1, while

Table 4-7 shows the obtained result of E14, E3, E8, and E20 form BF of Program 1.

Table 4-6: Sample Experiments and Average Case for CF of Program 1.

Exp

 No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E1 bbabba 649 19.3129 33.68 minimum fitness

limit reached

E3 bbabba 114 3.7284 33.41 minimum fitness

limit reached

E8 ababba 682 27.4562 33.66 minimum fitness

limit reached

E18 ababba 116 4.3524 34.31 minimum fitness

limit reached

Average ---------- 524

19.3371

33.5235

Table 4-6 gives a brief description for the sample of experiments for CF of Program1.

For example, in experiment 1 (E1), the founded test case "bbabba", which is used to

excute predicate1, is discoverd at Generation number 649 during 19.3129 seconds, at

fitness value equal 0, and with avarege of fitness value equal 33.68 . Finaly, the

termrrnation reaseon is that the minimum fitness limit is reached. Avarege for the 20

expriments was calculated and the results were the generation number equal 524.05

rounded to 524 , the needed time is 19.3371, and the mean of fitness value is 33.5235.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 70

Table 4-7: Sample Experiments and Average Case for BF of Program 1.

Time

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E3 bbabba 85 12.4177 37.15 minimum fitness

limit reached

E7 ababba 1219 176.7491 37.2 minimum fitness

limit reached

E14 ababba 1271 181.9128 40.59 minimum fitness

limit reached

E20 bbabba 34 5.0856 39.09 minimum fitness

limit reached

Average -------- 355 51.410125

41.7365

Table 4-7 describes sample experiments of BF for Program 1 . For example, in

experiment 14 (E14), the founded test case was "ababba ", which is used to excute

predicate1, is discoverd at Generation number 1271 during 181.9128 seconds at fitness

value equal 0, and with avarege of fitness value equal 40.59, and finaly the termrrnation

reaseon is that the minimum fitness limit is reached . Avarege for the 20 expriments

was calculated and the results were the generation number equal 355.45 rounded to

355, the needed time is 51.410125, and the mean of fitness value is 41.7365.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 71

(a) Experiment 2 flow

(b) Experiment 10 flow

Figure 4-8: The Flow of Experiments: E2 for CF, and E10 for BF, respectively.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 72

Figure 4-8 shows two Diagrams that explain the flows of the experiments.

Figure 4-8 (a) represents the flow for experiment 2 in Continuous Form. It starts with

188.5 fitness values and is then followed with 166.3, 155.8, 148.3, 111, 109.5, 108,

103.5, 100.5, 98.25, 65.5, and 32.75, until it reaches to 0. The generation is where the

zero fitness value found was 784. The lower part of diagrams contains the ASCII codes

for the individual, which is selected as the current best individual which is:

 {98, 98, 97 , 98 , 98 , and 97}.

Figure 4-8 (b) explains experiment 10's flow in BF. It began with cost equals 170.8 then

decreases to 141.8, 139.5, 129, 93.25, 91, 79, 76.75, 76, 70.75, 70, 68.5, and 67, 65.5,

32.75 and ended with cost equals 0. The generation where the test case found was 22. In

the lower part of the diagram there are the ASCII codes for the best individual

characters which are:

 { (1 0 0 0 0 1 1) , (0 1 0 0 0 1 1) ,

 (1 0 0 0 0 1 1) , (0 1 0 0 0 1 1) ,

 (0 1 0 0 0 1 1) , (1 0 0 0 0 1 1) }.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 73

(a) Continuous Form

(b) Binary Form

Figure 4-9: Twenty Experiments for CF and BF in Program1

Figure 4-9 shows two charts that display the results of 20 experiments of program1 in

the CF and BF. In Figure 4-9 chart (a) we noticed that the generation numbers for

experiments are approximately close to each other, on the other hand the generation

number in chart (b) have diversified values; therefore they are not close to each other. In

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 74

addition, we note from Average cases that the needed generation number to find the test

case in BF is less than the generation number in the CF. The required time to find the

test case in the BF is greater than the needed time in the CF.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 75

Program 2:

Testing Regular Expression that includes OR Operator (|) at the middle position of RE

using Proposed OED fitness function (Predicate 2). In Program 2 the Regular

expression under test is RE = baba|bba. The SSF is {bababa, babbba}. Predicate as

shown in Figure 4-2. In Table 4-8, we show the obtained results of sample CF

experiments, which are E4, E11, E17 and E19 from Program 2. Table 4-9 presents the

obtained results of sample experiments that are in BF of Program 2.

Table 4-8: Sample experiments and Average Case for CF of Program 2.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E4 babbba 226 8.8453 34.78 minimum fitness

limit reached

E17 babbba 1691 73.1021 32.91 minimum fitness

limit reached

E11 bababa 676 27.1286 33.25 minimum fitness

limit reached

E19 bababa 72 3.0888 35.6 minimum fitness

limit reached

Average ------- 449 17.16635 33.6155

Table 4-8 gives a briaf description for the 20 time experiments for CF of Program 2 .

In experiment 4 (E4) the founded test case “babbba “. Discoverd at Generation number

226 during 8.8453 seconds at fitness value equal 0 and with avarege of fitness value

equal 34.78. Finaly, the termrrnation reaseon is that the minimum fitness limit reached.

The Avarege case for the 20 expriments was founded and the results were the

generation number equal 448.65 rounded to 449, the needed time is 17.16635, and the

mean of fitness value is 33.6155 as shown in Table 4-8.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 76

Table 4-9: Sample Experiments and Average Case for BF of Program 2.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E4 babbba 303 43.2903 37.47 minimum fitness

limit reached

E7 babbba 439 62.4628 38.47 minimum fitness

limit reached

E11 bababa 18 2.808 43.23 minimum fitness

limit reached

E15 bababa 71 9.9841 37.32 minimum fitness

limit reached

Average -------- 195 27.77832

38.3015

Table 4-9 gives a the resultes for some sample experiments for BF of Program 2 .

one of the sample expriment is experiment 4 (E4) where the founded test case

"babbba", discoverd at Generation number 303 during 43.2903 seconds at fitness

value equal 0 and with avarege of fitness value equal 37.47. Finaly, the termrrnation

reaseon is that the minimum fitness limit reached . The Avarege for the 20 expriments

was calculated and the results were the generation number equal 195.05 rounded to 195

, the needed time is 27.77832, and the mean of fitness value is 38.3015.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 77

(a) Experiment 3 flow

(b) Experiment 10 flow

Figure 4-10: The Flow of Experiments: E3 for CF, and E10 for BF , respectively.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 78

Figure 4-10 shows two diagrams that explain the flows of the experiments in Program 2.

Figure 4-10 (a) represents the flow for experiment 3 in Continuous Form. It starts with

163. Then 149.3, 147, 117, 105, 82.75, 74.5, 68.5, 34.25, 32.75, until it reaches to 0.

The generation where the zero fitness value founded was 51, with test case equals to

"babbba". The lower part of diagrams contains the ASCII codes for the individual that

was chosen as the current best individual which is:

{98, 97, 98 , 98 , 98 , and 97}.

Figure 4-10 (b) explains experiment 10's flow in Binary Form. It began with cost equals

200.5 then decreased to 193, 185.5, 184, 162.5, 156.5, 146.8, 145.3, 111.8, 108.8, 76,

71.5, 70, 67, 65.5, and 32.75 and ended with cost equal 0. The generation where the test

case (bababa) found was 246. In the lower part of the diagram, there are the ASCII

codes for the best individual characters which are:

{ (0 1 0 0 0 1 1) , (1 0 0 0 0 1 1)

 (0 1 0 0 0 1 1) , (1 0 0 0 0 1 1)

 (0 1 0 0 0 1 1) , (1 0 0 0 0 1 1) }.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 79

(a) Continuous Form

(b) Binary Form

Figure 4-11: Twenty Experiments and Average Case for CF and BF in Program2.

Figure 4-11 shows two charts that display the results of 20 experiments of Program 2 in

CF and BF. In Figure 4-11 chart (a), we observed that the generation number for

experiments are approximately close to each other except for some extreme values like

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 80

E17. On the other hand, the generation number in Figure 4-11 chart (b) has diversified

values; therefore, they are not close to each other. In addition, we note from the

Average case for the experiments that the needed generation number to find the test

case in BF of Program 2 is less than the generation number in the CF, and the needed

time to find the test case in the BF is greater than the needed time in the CF.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 81

Program 3:

Testing Regular Expression that includes OR Operator (|) at the end position of RE

using the proposed OED fitness function (Predicate 3). In Program 3 the Regular

expression is RE = babbaa|b. The SSF for this program is {babbaa, babbab}. Figure 4-

3 shows Predicate 3. In Table 4-10, we describe the results of sample CF experiments

which Program 3. Table 4-11 presents the obtained results related to BF of Program 3.

Table 4-10: Sample Experiments and Average Case for CF of Program 3.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E2 babbab 24 2.4804 34.36 minimum fitness

limit reached

E8 babbab 7 0.4836 114.6 minimum fitness

limit reached

E14 babbaa 382 11.3881 33.06 minimum fitness

limit reached

E17 babbab 140 5.2884 32.92 minimum fitness

limit reached

Average -------- 206 7.41629 38.391 ------------------------

Table 4-10 summarizes sample of CF experiments for Program 3. As we can see in

experiment8 (E8) the founded test case "babbab" that used to execute predicate 3 which

aroused at Generation number 7 during 0.4836 seconds with fitness value equals zero

and with average of fitness value equal 114.6. The experiment terminated due to the

minimum fitness limit reached. In Table 4-10 the Average for the 20 experiments were

calculated and the generation number equal 206.4 rounded to 206, the needed time is

7.41629, and the mean of fitness value is 38.391.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 82

Table 4-11: Sample Experiments and Average Case for BF of Program 3.

Time

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E1 babbaa 419 52.9623 35.21 minimum fitness

limit reached

E5 babbab 390 55.5208 36.3 minimum fitness

limit reached

E16 babbab 344 45.8643 38.4 minimum fitness

limit reached

E20 babbab 108 14.4145 38.8 minimum fitness

limit reached

Average --------- 154 21.256695 40.633 ------------------------

Table 4-11 gives a briaf description for sample expriments for Program 3 but in BF .

In experiment 5 (E5), the founded test case was "babbab", discoverd at generation

number 390 with needed time equal to 55.5208 seconds at fitness value equal 0 and

with avarege of fitness value equal 36.3 , E5 terminated due to the minimum fitness

limit reached . The Avarege for the tweenty expriments the generation number was

equal to 154.1 rounded to 154 , the needed time is 21.256695 , and the mean of fitness

value is 40.633 The charts below display some of sample expriments and their flows .

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 83

(a) Experiment 4 flow

(b) Experiment 6 flow

Figure 4-12: The Flow of Experiments: E4 for CF, and E6 for BF, respectively.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 84

As we can observe in Figure 4-12, two diagrams illustrate the experiments and their

flows. Figure 4-12 (a) presents the flow for experiment 4 in Continuous Form. It starts

with 156.5 fitness value and decreases until it reaches zero. The generation where the

test case (babbaa) was discovered equal to 238. In the lower part of diagrams, the ASCII

codes for current best individual appeared, which are:

 {98, 97, 98, 98, 97, and 97}.

Figure 4-12 (b) explains the flow of experiment 6 in Binary Form. It began with cost

that equals 233.5 then decreased until it reached to fitness value equal 0. The generation

where the test case (babbab) found was 140. In the lower part of the diagram there is the

binary representation for the best individual characters which is:

{ (0 1 0 0 0 1 1) , (1 0 0 0 0 1 1)

 (0 1 0 0 0 1 1) , (0 1 0 0 0 1 1)

 (1 0 0 0 0 1 1) , (0 1 0 0 0 1 1) }.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 85

(a) Continuous Form

(b) Binary Form

Figure 4-13: Twenty Experiments and Average Case for CF and BF in Program3.

In Figure 4-13, there are two charts that display the results of 20 experiments of

Program 3 the CF in Figure 4-13 (a) , and the BF in Figure 4-13 (b). In chart (a), the

generation number for experiments are approximately close to each other except for

some extreme values such as E9. On the other hand, the generation number in chart (b)

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 86

has diversified values; therefore, they are not close to each other. In addition, we note

from the Average of the 20 experiments that the needed generation number to find the

test case in BF of Program 3 is less than the generation number in the CF, and the

needed time to find the test case in the BF is greater than the needed time in the CF.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 87

Program 4:

Testing Regular Expression that includes One Repetitions Operator (*) using the

proposed OED fitness function (Predicate 4). In Program 4 the Regular expression is

RE = ba*b. The SSF is {bb, bab, baab, baaab, baaaab}. The founded Test Case should

belong to SSF, therefore executes predicate 4 that is shown in Figure 4-4. Table 4-12

summarizes the sample of obtained results of 20 CF experiments of Program 4, which

have been run 20 times and had different results., while Table 4-13 shows the obtained

results related to BF of Program 4.

Table 4-12: Sample Experiments and Average Case for CF of Program 4.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E2 baaab 204 4.3680 33.7 minimum fitness limit

reached

E6 baaaab 723 31.2002 33.83 minimum fitness limit

reached

E13 bab 48 1.5600 33.16 minimum fitness limit

reached

E17 bab 1056 35.7866 32.51 minimum fitness limit

reached

Average --------- 478 17.18818 33.3735 -----------------

 In Table 4-12 we summrize the result of sample experiments for CF of Program 4 .

In experiment 2 (E2) the found TC was " baaab " that used to excute predicate 4

discovered at Generation number 204 during 4.3680 seconds with cost equal zero and

with avarege of fitness value equal 33.7 . The last row in Table 4-12 represent The

Avarege for the 20 expriments were the generation number equal 478.25 rounded to

478 , the needed time is 17.18818 , and the mean of fitness value is 33.3735. A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 88

Table 4-13: Sample Experiments and Average Case for BF of Program 4.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E2 bb 56 5.8188 34.23 minimum fitness

limit reached

E5 baaab 25 5.8968 45.55 minimum fitness

limit reached

E13 baab 126 25.1318 34.68 minimum fitness

limit reached

E20 bab 162 26.0678 36.38 minimum fitness

limit reached

Average ---------- 240 50.12156 42.6645 -----------------

Table 4-13 gives a briaf description for sample experiments for Program 4 in BF. In

experiment2 (E2) the founded test case was "bb" , discoverd at Generation number 56

with needed time equal to 5.8188 seconds at fitness value equal 0 and with avarege of

fitness value equal 34.23 , and termrrnation reaseon is that the minimum fitness limit

reached . Avarege for the 20 expriments the generation number was equal to 240.4

rounded to 240 , the needed time is 50.12156, and the mean of fitness value is 42.6645.

The following chartes display some of choosen expriments and their flows .

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 89

 (a) Experiment 8 flow.

(b) Experiment 10 flow.

Figure 4-14: The Flow of Experiments: E8 for CF, and E10 for BF, respectively.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 90

In Figure 4-14, we can see two diagrams that illustrate the experiments and their flows.

Figure 4-14 (a) presents the flow for experiment 8 in Continuous Form. It starts with

163.3 fitness value and then 127.5, 90.25, 88.75, 87.25, 72.25, 68.5, 67, and 32.75, until

reach to 0. The generation where the test case (baaab) discovered was 70. In The lower

part of diagrams the ASCII codes for current best individual is appeared that are:

{98, 97, 97 , 97, and 98}.

Figure 4-14 (b) explains flow of experiment 10 in Binary Form. It began with cost

equals 106.8 then decreases to 91.75, 79, 73.75, 68.5, 67, and 66.25, 65.5, 32.75 and

ended with cost equal 0. The generation where the test case (baab) found was 223. In

the lower part of the diagram there are the ASCII codes for the best individual

characters which are:

 { (0 1 0 0 0 1 1), (1 0 0 0 0 1 1)

 (1 0 0 0 0 1 1), (0 1 0 0 0 1 1) }.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 91

(a) Continuous Form

(b) Binary Form

Figure 4-15: Twenty Experiments for CF and BF in Program 4.

Figure 4-15 shows two charts that display the results of 20 experiments of Program 4.

In Figure 4-15 chart (a), we observed that the generation number for experiments are

approximately close to each other except some extreme value such as E13 and E7. On

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 92

the other hand, the generation numbers in chart (b) have diversified values; therefore,

they are not close to each other. In addition, we note from the Average of the 20

experiments that the needed generation number to find the test case in BF of Program 4

is less than the generation number in the CF. The needed time to find the test case in

the BF is greater than the needed time in the CF.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 93

Program 5:

Testing Regular Expression that includes Two Repetitions Operator (*) using the

proposed OED fitness function (Predicate 5). In Program 5 the Regular expression is

RE = ba*b*. The SSF is {b, ba, baa, baaa, baaaaa, bb, bbb, bbbb, bbbbb, bbbbbb, bab,

baabb, baaabb, baabbb, babbbb, baaaab}. Predicate five which shown in Figure 4-5.

In Table 4-14, we preview the obtained results of sample CF experiments, which are

E4, E8, E13 and E17 from Program 5. Table 4-15 presents the obtained results of

sample experiments that are in BF of Program 5.

Table 4-14: Sample Experiments and Average Case for CF of Program 5.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E4 baaa 107 4.5552 33.23 minimum fitness

limit reached

E8 bbbb 318 16.3177 33.55 minimum fitness

limit reached

E13 bbbbb 15 0.9984 34.4 minimum fitness

limit reached

E17 ba 264 12.9949 32.62 minimum fitness

limit reached

Average -------- 199 9.606535 34.4535 ------------------------

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 94

In Table 4-14 we summrize the results sample Expriment that taken from 20 time

expriments conducted for CF of Program 5 . For example in experiment 8 (E8) the

founded test case " bbbb " that used to excute predicate 5 found at Generation number

318 during 16.3177 seconds with cost equal zero and with avarege of fitness value

equal 33.55. The last row in Table 4-14 shown The Avarege for the 20 expriments

were the generation number equal 198.9 rounded to 199 , the needed time is 9.606535,

and the mean of fitness value is 34.4535.

Table 4-15: Sample Experiments and Average Case for BF of Program 5.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E2 baabb 1004 622.7872 37.84 minimum fitness

limit reached

E9 baa 234 100.8702 34.03 minimum fitness

limit reached

E17 bbbbb 21 14.2585 41.3 minimum fitness

limit reached

E19 ba 2 1.1076 87.04 Minimum fitness

limit reached

Average --------- 139.2 83.660995 47.3075 ------------------------

Table 4-15 present a briaf description of sample experiments for Program 5 but in

BF. In experiment2 (E2) the revealed test case was " baabb" , discoverd at

Generation number 1004 with needed time equal to 622.7872 seconds at fitness value

equal 0 and with avarege of fitness value equal 37.84 , and termrrnation reaseon is that

the minimum fitness limit reached . Avarege for the 20 expriments the generation

number was equal to 139 , the needed time is 83.660995 , and the mean of fitness

value is 42.6645. The belowed chartes display some of Sample expriments and their

flows .

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 95

 (a) Experiment 2 flow

(b) Experiment 5 flow

Figure 4-16: The Flow of Experiments: E2 for CF, and E5 for BF, respectively.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 96

As we can observe in Figure 4-16, two diagrams that illustrate the experiments and their

flows. Figure 4-16 (a) presents the flow for experiment 2 in CF. It starts with 32.75

fitness value and decreases until reach to zero. The generation where the test case (bb)

discovered was 154. In The lower part of diagrams the ASCII codes for current best

individual is appeared that are:

{98 and 98}.

 Figure 4-16 (b) explains flow of experiment 5 in BF. It began with cost equals 81.25

then decreases to 75.25, 36.5, and 32.75 and ended with fitness value equal 0. The

generation where the test case (bbb) found was 6. In the lower part of the diagram there

are the ASCII codes for the best individual characters which are:

 { (0 1 0 0 0 1 1), (0 1 0 0 0 1 1) ,

 (0 1 0 0 0 1 1)}.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 97

(a) Continuous Form

(b) Binary Form

Figure 4-17: Twenty Experiments for CF and BF in Program 5.

 In Figure 4-17, we can observe two charts that display the results of 20 experiments of

Program 5. In Figure 4-17 chart (a), we observed that the generation number for

experiments are approximately close to each other except some extreme value such as

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 98

E19 and E10. On the other hand, the generation number in chart (b) has diversified

values; therefore, they are not close to each other. In addition, we note from the

Average of the 20 experiments that the needed generation number to find the test case in

binary form of Program 5 is less than the generation number in the CF. The needed

time to find the test case in the BF is greater than the needed time in the Continuous

Form.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 99

Program 6:

Testing Regular Expression that includes Three Repetitions Operator (*) using the

proposed OED fitness function (Predicate 6). In Program 6 the Regular expression is

RE = ba*b*a*. The SSF is { b, ba, baa, baaa, baaaaa, bb, bbb, bbbb, bbbbb, bbbbbb,

bab, baabb, baaabb, baabbb, babbbb, baaaab, baabba, baabaa, babaaa, babbaa}.

Predicate 6 shown in Figure 4-6. Table 4-16 summarizes the sample of obtained results

of 20 CF experiments of Program 6, which have been run 20 times and had different

results, While Table 4-17 shows the obtained results related to BF of Program 6.

Table 4-16: Sample Experiments and Average Case for CF of Program 6.

Exp

No.

Test

Case

Generations

No.

Time Mean f(x) Termination

Reason

E2 baaaaa 1120 49.7175 32.85 minimum fitness

limit reached

E10 bbbbbb 237 12.4333 34.27 minimum fitness

limit reached

E13 bab 76 3.9624 32.42 minimum fitness

limit reached

E20 baabb 73 3.9000 34.14 minimum fitness

limit reached

Average ------- 291 14.67735 33.2945 -----------------------

In Table 4-16 we summrize the sample result from 20 experiments for CF of

Program 6 . In experiment2 (E2) the found test case was " baaaaa" that used to excute

predicate 6 discovred at Generation number 1120 during 49.7175 seconds with cost

equal zero and with avarege of fitness value equal 32.85 . The expriment terminated due

to the minimum fitness limit reached . In last row in Table 4-16 we can Notice The

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 100

Avarege for the tweenty expriments were the generation number equal 290.95 rounded

to 291 , the needed time is 14.67735, and the mean of fitness value is 33.2945.

Table 4-17: Sample Experiments and Average Case for BF of Program 6.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E3 baabb 263 207.2317 36.09 minimum fitness

limit reached

E8 b 1 0.5772 46.56 minimum fitness

limit reached

E15 bbbbb 743 570.5737 35.6 minimum fitness

limit reached

E20 baaa 16 10.6549 36.32 minimum fitness

limit reached

Average --------- 139 99.49432 45.367 ------------------------

Table 4-17, gives a briaf description for sample experiments for Program 6 but in

BF. In experiment 3 (E3) the discovered test case was "baabb", found at

Generation number 263 , and needed time equal to 207.2317 seconds at fitness value

equal 0 and with avarege of fitness value equal 36.09, and termrrnation reaseon is that

the minimum fitness limit reached . Avarege for the 20 expriments was calculated and

the results were as follow : the generation number was 138.9 rounded to 139 , the

needed time is 99.49432 , and the mean of fitness value is 45.367 . The belowed

chartes display some of choosen expriments and their flows .

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 101

 (a) Experiment 5 flow

(c) Experiment 6 flow

Figure 4-18: The Flow of Experiments: E5 for CF, and E6 for BF, respectively.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 102

In Figure 4-18, we can observe two diagrams that illustrate the experiments. In Figure

4-18 (a) presents the flow for experiment 5 in CF. It starts with 34.25 fitness value and

then 32.75, until reach to 0. The generation where the test case (bb) discovered was 246.

In The lower part of diagrams the ASCII codes for current best individual is appeared

that are {98, and 98}.

Figure 4-18 (b) explains flow of experiment 6 in Binary Form. It began with cost equals

142.5 then decreases to 120, 71.5, 68.5, 34.25, 33.5, and 32.75 and ended with cost

equal 0. The generation where the test case (bbbb) found was 280. In the lower part of

the diagram there are the ASCII codes for the best individual characters which are:

{ (0 1 0 0 0 1 1) , (0 1 0 0 0 1 1) ,

 (0 1 0 0 0 1 1) , (0 1 0 0 0 1 1) }.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 103

(a) Continuous Form

(b) Binary Form

Figure 4-19: Experiments for CF and BF in Program 6

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 104

In Figure 4-19, we notice two charts that show the results of 20 experiments of Program

6. Figure 4-19 chart (a) we found that the generation number for experiments are

approximately close to each other except some extreme value such as E2 and E12. On

the other hand, the generation number in chart (b) has diversified values; therefore, they

are not close to each other. Also we note from the Average of the 20 experiments that

the needed generation number to find the test case in BF of Program 6 is less than the

generation number in the CF, also the required time to find the test case in the BF is

greater than the needed time in the CF. We will explain these notices later in this

chapter.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 105

Program 7:

Testing Regular Expression that includes Repetitions Operator (*) and OR Operator (|)

using Proposed OED fitness function (Predicate 7). In Program 7 the Regular

expression is RE = ba*a|b. SSF is {ba, bb, baa, bab, baaa, baab, baaaa, baaab, baaaaa,

baaaab}. Predicate 7 shown in Figure 4-7. Table 4-18 summarizes the sample of

obtained results of 20 CF experiments of Program 7, which have been run 20 times and

had different results, While Table 4-19 shows the obtained results related to BF of

Program 7.

Table 4-18: Sample Experiments and Average Case for CF of Program 7.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E2 baaaab 548 24.4922 32.47 minimum fitness

limit reached

E7 baab 809 36.6446 32.87 minimum fitness

limit reached

E13 baaaa 536 18.8917 32.98 minimum fitness

limit reached

E20 baaab 668 30.5138 32.42 minimum fitness

limit reached

Average ------- 457 18.98767 33.509 ------------------------

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 106

In Table 4-18 we summrize the result of sample experiments for CF of Program 7 .

In experiment2 (E2) the founded test case " baaaab " that used to excute predicate 7

arise at Generation number 548 during 24.4922 seconds with avarege of fitness value

equal 32.47, E2 terminated due to the minimum fitness limit reached . Avarege for the

20 expriments were the generation number equal 456.65 rounded to 457 , the needed

time is 18.98767, and the mean of fitness value is 33.509.

Table 4-19: Sample Experiments and Average Case for BF of Program 7.

Exp

No.

Test

Case

Generations

No.

Time Best

f(x)

Mean

f(x)

Termination

Reason

E4 baaa 693 213.7994 0 36.7 minimum fitness

limit reached

E11 baaab 46 18.6577 0 35.47 minimum fitness

limit reached

E17 bb 8 1.9032 0 41.08 minimum fitness

limit reached

E20 baaa 10 3.8688 0 67.06 minimum fitness

limit reached

Average ------- 275.4 102.76938 0 42.9155 ------------------------

Table 4-19 gives a briaf description for sample experiments for Program 7 but in BF.

In experiment 4 (E4) the found test case was "baaa", discoverd at Generation number

693, and needed time equal to 213.7994 seconds at fitness value equal 0 and with

avarege of fitness value equal 36.7 , and termrrnation reaseon is that the minimum

fitness limit reached The Avarege case for the 20 expriments was calculated and the

results were as follow: the generation number was 275.4 rounded to 275 , the needed

time is 102.76938, and the mean of fitness value is 42.9155. The following chartes

display some of choosen expriments and their flows .

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 107

 (a) Experiment 9 flow

(b) Experiment 2 flow

Figure 4-20: The Flow of Experiments: E9 for CF, and E2 for BF, respectively.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 108

In Figure 4-20, we can observe two diagrams that illustrate the experiments and their

flows. Figure 4-20 (a) presents the flow for experiment 9 (E9) , which is in CF. It starts

with 131.3 fitness value and then 122.3, 116.3, 108, 67, and 32.75, until reach to 0. The

generation where the test case (baaab) discovered was 1474. In The lower part of

diagrams the ASCII codes for current best individual is appeared that are:

{98, 97, 97 , 97, and 98}.

Figure 4-20 (b) explains flow of experiment 2 (E2) that is in Binary Form. It began with

cost equals 117.8 then decreases to 116.3, 85, 77.5, 76.75, 44, 35, 34.25 and 32.75 then

the fitness value ended with cost equal 0. The generation where the test case (baab)

found was 13. In the lower part of the diagram, there are the ASCII codes for the best

individual characters, which are:

{ (0 1 0 0 0 1 1) , (1 0 0 0 0 1 1) ,

 (1 0 0 0 0 1 1) , (0 1 0 0 0 1 1) }.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 109

(a) Continuous Form

(b) Binary Form

Figure 4-21: Experiments for CF and BF in Program 7.

 In Figure 4-21, we observe two charts that display the results of 20 experiments of

Program 7. In Figure 4-21 chart (a), we observed that the generation number for

experiments are approximately close to each other except some extreme value such as

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 110

E12 and E15. On the other hand, the generation number in chart (b) has diversity

values; therefore, they are not close to each other. In addition, we noticed from the

Average of the 20 experiments that the needed generation number to find the test case in

BF of Program 7 is less than the generation number in the CF. Also the required time to

find the test case in the BF is greater than the needed time in the CF. We will explain

these notices in the next section.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 111

4.9 Analysis and Results

In the previous sections seven programs, each program represents a regular expression

predicate, and each one is conducted 20 times for Binary and Continuous Form as a

separate experiment. To study and analyze each experiment, we noticed five

parameters: Numbers of generations, Required Time to find the TC, Best Fitness

Function, Mean Fitness Function, and GA Termination Reason. After finishing the

execution of the seven programs for 20 times, the average for each experiment was

calculated, then, we studied, analyzed and compared each experiment, to others. Table

4-20 presents the average results for the seven programs in CF and BF.

Table 4-20: The Average Results for Seven Programs in CF and BF.

Form Continuous (CF) Binary (BF)

Programs Gen.

No.

Time

(Seconds)

Mean of

fitness

value

Gen.

No.

Time

(Seconds)

Mean of

fitness

value

Program1 524

19.34

33.52

356

51.41

41.74

Program2 449

17.18

33.2

195

27.78

38.30

Program3 206

7.47

38.39

154

21.26

40.63

Program4 478

17.19

33.37

240 50.12

42.67

Program5 199

9.61

34.45

139

83.66

47.31

Program6 291

14.68

33.29

139

99.49

45.37

Program7 457

18.99

33.51

275

102.77

42.92

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 112

Table 4-20 summarizes the average results for each program in CF and BF. We have

two main factors we used to compare between CF and BF:

• Generation Number.

• Required Time.

From Table 4-20, we conclude the following Conclusions and Notices:

1. Generation Number:

CF Generation Number is greater than BF’s in all the Programs and

Experiments. For example, in Program 4 the average of the generation number

in CF is to 478, while the average of the generation number in BF is 240. The

percentage between the BF Generation Number and the CF Generation Number

is 0.58

2. Required Time :

The Required Time in CF is less than the Required Time in BF. For example in

Program 1 the Required Time to find TC in CF is 19.34, on the other hand the

Required Time to find TC in the BF is 51.41. The percentage between the CF

Required Time and the BF Required Time is 0.24.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 113

Figure 4-22: Comparison between the Average of Generation Number in BF and Cf.

Figure 4-22 shows the number of generations needed to find the solution. The black

columns represent the Average of Generation Number in CF, while the Gray columns

represent the average of Generation Number in BF. From Figure 4-22, we can conclude

that the number of needed generation in BF is less than the one in the CF since BF GA

deal with the character as a set of bits e.g. (0, 1) therefore, during the mutation

operation, any changes in one bit (underlying binary representation) may lead to a huge

changes in the characters representation, which, means that the GA need less generation

numbers to reach the solution (TC). On the other hand, in CF, we deal with characters

as ASCII codes, which are decimal numbers, where during the mutation operation, the

character is considered as one unit, which is the ASCII code value; therefore, the

changes in CF are not strong as the changes in BF, which deal with the character as a set

of units (bits).

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 114

Figure 4-23: Comparison between the Average of Required Time in BF and Cf.

In Figure 4-23, the black columns point to the Average Required Time in CF for every

program and the Gray columns refer to the Average Required Time in BF. We can

conclude from Figure 4-23 that the needed time to find the TC in BF is greater than the

time in CF, and this due to dealing with one character in BF indicates that GA deals

with a set of bits (units), which means more time to manipulate these bits in the whole

operation of GA. On the other hand, CF GA manipulates each character as one unit,

which reduces the needed time. Another reason is that GA in CF needs not to use

encoding and decoding methods as in BF, which leads to less Required Time.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 115

CHAPTER 5

Conclusion and Future Research

5.1 Accomplishments and Contributions to the Field

In this research, we have accomplished several goals. We propose new methodology

that used to Test RE predicates. In addition, we used heuristic search (GA) in RE

Testing. We adapt OED Cost function which used in RE Testing.

We have implemented our proposed methodology using Matlab7.1. Our simulation

included seven experiments for each Form; Binary and Continuous Form. The obtained

results studies and analyzed. The obtained results proof our proposed technique

therefore the RE Predicate covered.

The RE predicate experiments are implemented in tow forms BF and CF. the BF needed

more time to find the TC with less number of generations, while CF needed less time

with greater number of generations. The percentage between the BF Generation

Number and the CF Generation Number is 0.58. On the other hand the percentage

between the CF Required Time and the BF Required Time is 0.24.

5.2 Future Researches

Ongoing researches have been established to find new proposed methodology and

techniques that include all the special characters for regular expression. Therefore, we

test regular expression predicates that contains all type of regular expression. In addition

use other cost function other than OED to implement our proposed technique.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 116

References

• Abo-Hammour Z.S, (2002), Advance Continuous Genetic Algorithm and their

Application in the Motion Planning of Robot Manipulators and In the Numerical

Solution of Boundary value Problems, PhD .D.Dissertation.

• Alshraideh Mohammad, (2007), USE OF PROGRAM AND DATA-SPECIFIC

HEURISTICS FOR AUTOMATIC SOFTWARE TEST DATA

GENERATION, PhD Thesis in the University of Hull.

• Alshraideh Mohammad and Bottaci Leonardo, (2006) , Automatic Software

Test Data Generation for String Data Using Heuristic Search with Domain

Specific Search Operators, Department of Computer Science, the University

Of Hull, HULL, HU6 7RX, UK.

• Alzabidi Maha, Kumar Ajay, and Shaligram A.D. ,(2009), Automatic Software

Structural Testing by Using Evolutionary Algorithms for Test Data

Generations, IJCSNS International Journal of Computer Science and

Network Security, VOL.9 No.4.

• Boyapati Chandrasekhar, Khurshid Sarfraz, and Marinov Darko,(2002), Korat:

Automated Testing Based on Java Predicates , MIT Laboratory for Computer

Science 200 Technology Square Cambridge, MA 02139 USA.

• Chen S.M, (2002), Automatically Constructing Membership Functions and

Generating Fuzzy Rules Using Genetic Algorithm. An International Journal,

Vol, 33, pp.841-862.

• Chu, H.D, (1996), an Evaluation Scheme of Software Testing Techniques.

http://citeseer.ist.psu.edu/68763.html

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 117

• Hanif Ayesha, Ahmed Zaheer, and Hanif Muhammad, and Aqdas Ali (2006),

Regular Expression to Finite State Machine , Journal of Applied Sciences

Research, 2(12): 1359-1362, INSInet Publication.

• Haupt Randy L. and Haupt Sue Ellen (2004), PRACTICAL GENETIC

ALGORITHMS, SECOND EDITION, Copyright © 2004 by John Wiley &

Sons, Inc. All rights reserved.

• HUANG J.C,(1975), An Approach to Program Testing , Department of

Computer Science, University of Houston, Houston, Texas 77004,

Cornputmg Surveys Vol. 7, No. 3 September.

• Khor S. and Grogono P. (2004). Using a Genetic Algorithm and Formal Concept

Analysis to Generate Branch Coverage Test Data Automatically, In the

Proceedings of the 19
th

 International Conference on Automated Software

Engineering.

• Korel .B, (1990), Automated Software Test Data Generation, IEEE Transactions

on Software Engineering, IEEE Transactions on Software Engineering,

Volume 16, No. 8, pp. 870-879.

• Kurtz Stefan, 2003, Foundations of Sequence Analysis “Lecture notes for a

course In the Summer Semester 2003".

• J. Duran and S. Ntafos, (1984), an Evaluation of Random Testing, IEEE

Transactions on Software Engineering, 10 (4).

• Last Mark ,Eyal Shay, and Kandel Abraham,(2005), Effective Black-Box

Testing with Genetic Algorithms, Department of Information Systems

Engineering, Ben-Gurion University of the Negev, and, 2Department of

Computer Science and Engineering, University of South Florida.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 118

• Lu Luo, (2002), Software Testing Techniques Technology Maturation and

Research Strategy, Institute for Software Research International Carnegie

Mellon University Pittsburgh, PA15232 USA.

• Michael, C.C., McGraw, G.E., Schatz, M.A., and Walton, C.C, (1997), Genetic

algorithms for dynamic test data generation, In Proceedings of the 12th IEEE

International Automated Software Engineering Conference (ASE 97), pp.

307-308, Tahoe, NV.

• Mitchell, M (1999), an Introduction to Genetic Algorithms. Reading, MA:

MIT.

• Muzatko P, (1996), approximates regular expression matching, faculty

electrical engineering Czech Technical University.

• Pallavi Joshi, Koushik Sen and Mark Shlimovich, (2007), Predictive Testing:

Amplifying the Effectiveness of Software Testing, EECS Department,

university of Californi, Berkeley, USA, ACM (978-1-59593-812-1/07/0009).

• Pargas, R.P., Harrold, M.J., and Peck, (1999), R.R. Test-Data Generation Using

Genetic Algorithms. Journal of Software Testing, Verification and

Reliability.

• Roper, M., Maclean, I., Brooks, A., Miller, J., and Wood, M, (1995) Genetic

Algorithms and the Automatic Generation of Test Data.

• Ruilian Zhao and Michael R. Lyu, (2003), Character String Predicate Based

Automatic Software Test Data Generation, Beijing University of Chemical

Technology, Chinese University of Hong Kong, IEEE.

• Sthamer Harmen, (1995), the Automatic Generation of Software Test Data

Using Genetic Algorithms, University of Glamorgan / Prifvsgol Morgannwg

for the degree of a Doctor of Philosophy.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 119

• Tai K. C, (1996), Theory of Fault-based Predicate Testing for Computer

Programs, IEEE Transactions on Software Engineering.

• THOMPSON Ken (1968) , Regular Expression Search Algorithm, Bell

Telephone Laboratories, Inc., Murray Hill, New Jersey, Volume 11 /

Number 6 .

• Tracey N, J. Clark, and K. Mander, (1998), Automated Program Flaw Finding

Using Simulated Annealing, Proceedings of International Symposium on

Software Testing and Analysis, Software Engineering, Notes, March.

• W.pratt Terrence, and zelkowitz Marvin, programming languages design and

implementation ", fourth edition.

• Zhao Ruilian and Lyuv Michael R, (2003), Character String Predicate Based

Automatic Software Test Data Generation, Proceedings of the Third

International Conference on Quality Software (QSIC’03) 0-7695-2015-4/03.

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 120

Appendix A

Results and Experiments

Program 1

Continuous Form Experiments:

Table A-1: Twenty Experiments for CF in Program 1.

Exp

No.

Test Case Generations

No.

Time Best

f(x)

Mean

f(x)

Termination Reason

E1 bbabba 649 19.3129 0 33.68 minimum fitness limit

reached

E2 ababba 784 28.5014 0 32.75 minimum fitness limit

reached

E3 bbabba 114 3.7284 0 33.41 minimum fitness limit

reached

E4 ababba 1452 57.2836 0 33.75 minimum fitness limit

reached

E5 ababba 369 14.5393 0 33.58 minimum fitness limit

reached

E6 ababba 375 10.9825 0 33.3 minimum fitness limit

reached

E7 ababba 631 19.5001 0 32.55 minimum fitness limit

reached

E8 ababba 682 27.4562 0 33.66 minimum fitness limit

reached

E9 ababba 531 21.3253 0 32.85 minimum fitness limit

reached

E10 bbabba 606 24.5078 0 34.74 minimum fitness limit

reached

E11 bbabba 815 33.4778 0 32.85 minimum fitness limit

reached

E12 bbabba 160 4.9608 0 32.86 minimum fitness limit

reached

E13 bbabba 727 18.1585 0 33.02 minimum fitness limit

reached

E14 bbabba 262 10.0153 0 33.45 minimum fitness limit

reached

E15 ababba 831 33.7118 0 33.4 minimum fitness limit

reached

E16 bbabba 196 7.6596 0 33.54 minimum fitness limit

reached

E17 bbabba 766 30.8414 0 34.5 minimum fitness limit

reached

E18 ababba 116 4.3524 0 34.31 minimum fitness limit

reached

E19 bbabba 97 3.7908 0 35 minimum fitness limit

reached

E20 ababba 318 12.6361 0 33.27 minimum fitness limit

reached

Average ---------- 524

19.3371

0 33.5235

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 121

Binary Form Experiments:

Table A-2: Twenty Experiments for BF in Program 1.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E1 bbabba 291 40.5915 38.73 minimum fitness limit

reached

E2 ababba 1343 199.0573 41.05 minimum fitness limit

reached

E3 bbabba 85 12.4177 37.15 minimum fitness limit

reached

E4 ababba 17 2.8392 7.48 minimum fitness limit

reached

E5 ababba 486 69.8260 37.27 minimum fitness limit

reached

E6 bbabba 95 13.5097 38.64 minimum fitness limit

reached

E7 ababba 1219 176.7491 37.2 minimum fitness limit

reached

E8 ababba 20 3.1512 64.48 minimum fitness limit

reached

E9 ababba 56 8.1589 37.54 minimum fitness limit

reached

E10 ababba 22 3.3852 67.26 minimum fitness limit

reached

E11 bbabba 895 129.2000 38.07 minimum fitness limit

reached

E12 ababba 31 4.6332 49.27 minimum fitness limit

reached

E13 ababba 66 9.6253 38.26 minimum fitness limit

reached

E14 ababba 1271 181.9128 40.59 minimum fitness limit

reached

E15 bbabba 338 48.0015 39.07 minimum fitness limit

reached

E16 ababba 42 6.1620 37.66 minimum fitness limit

reached

E17 ababba 14 2.2308 69.58 minimum fitness limit

reached

E18 bbabba 51 7.4256 37.98 minimum fitness limit

reached

E19 ababba 733 104.2399 38.36 minimum fitness limit

reached

E20 bbabba 34 5.0856 39.09 minimum fitness limit

reached

Average -------- 355 51.410125

41.7365

 A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 122

Program 2

Continuous Form Experiments:

Table A-3: Twenty Experiments for CF in Program 2.

Exp

No.

Test Case Generations

No.

Time Mean

f(x)

Termination Reason

E1 babbba 413 15.5845 32.85 minimum fitness limit

reached

E2 babbba 639 26.4266 33.28 minimum fitness limit

reached

E3 babbba 51 2.1996 33.34 minimum fitness limit

reached

E4 babbba 226 8.8453 34.78 minimum fitness limit

reached

E5 bababa 164 5.3664 32.96 minimum fitness limit

reached

E6 babbba 240 9.2509 34.84 minimum fitness limit

reached

E7 bababa 249 9.5473 34.91 minimum fitness limit

reached

E8 bababa 872 36.0518 33.31 minimum fitness limit

reached

E9 bababa 233 6.9732 32.42 minimum fitness limit

reached

E10 bababa 536 19.2661 32.89 minimum fitness limit

reached

E11 bababa 676 27.1286 33.25 minimum fitness limit

reached

E12 babbba 190 4.5240 32.42 minimum fitness limit

reached

E13 bababa 609 19.7965 33.69 minimum fitness limit

reached

E14 bababa 625 20.6077 32.42 minimum fitness limit

reached

E15 bababa 296 11.4037 34.12 minimum fitness limit

reached

E16 babbba 621 25.1162 34.08 minimum fitness limit

reached

E17 babbba 1691 73.1021 32.91 minimum fitness limit

reached

E18 babbba 195 4.5864 33.91 minimum fitness limit

reached

E19 bababa 72 3.0888 35.6 minimum fitness limit

reached

E20 bababa 375 14.4613 34.33 minimum fitness limit

reached

Average

------- 449 17.16635 33.6155 --------------------------------

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 123

Binary Form Experiments:

Table A-4: Twenty Experiments for BF in Program 2.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination

Reason

E1 bababa 94 11.8093 37.17 minimum fitness

limit reached

E2 babbba 55 8.0653 36.95 minimum fitness

limit reached

E3 bababa 496 74.4125 39.54 minimum fitness

limit reached

E4 babbba 303 43.2903 37.47 minimum fitness

limit reached

E5 babbba 27 4.0248 36.01 minimum fitness

limit reached

E6 bababa 497 70.7777 38.38 minimum fitness

limit reached

E7 babbba 439 62.4628 38.47 minimum fitness

limit reached

E8 bababa 188 26.9726 40.44 minimum fitness

limit reached

E9 babbba 88 12.4333 37.97 minimum fitness

limit reached

E10 bababa 246 34.6322 38.23 minimum fitness

limit reached

E11 bababa 18 2.808 43.23 minimum fitness

limit reached

E12 bababa 370 51.7143 35.52 minimum fitness

limit reached

E13 babbba 205 28.7822 37.2 minimum fitness

limit reached

E14 babbba 31 4.5552 38.45 minimum fitness

limit reached

E15 bababa 71 9.9841 37.32 minimum fitness

limit reached

E16 babbba 41 5.7252 41.13 minimum fitness

limit reached

E17 bababa 431 60.4816 39.78 minimum fitness

limit reached

E18 bababa 18 2.7768 39.17 minimum fitness

limit reached

E19 bababa 233 32.6198 38.03 minimum fitness

limit reached

E20 bababa 50 7.2384 35.57 minimum fitness

limit reached

Average -------- 195 27.77832

38.3015

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 124

Program 3

Continuous Form Experiments:

Table A-5: Twenty Experiments for CF in Program 3.

Exp

No.
Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E1 babbab 472 10.1089 34.17 minimum fitness limit

reached

E2 babbab 24 2.4804 34.36 minimum fitness limit

reached

E3 babbab 472 19.7185 34.17 minimum fitness limit

reached

E4 babbaa 238 9.0169 34.81 minimum fitness limit

reached

E5 babbab 63 2.4960 33.14 minimum fitness limit

reached

E6 babbab 28 1.2324 45.02 minimum fitness limit

reached

E7 babbab 212 7.8469 33.85 minimum fitness limit

reached

E8 babbab 7 0.4836 114.6 minimum fitness limit

reached

E9 babbab 636 26.7542 34.17 minimum fitness limit

reached

E10 babbaa 38 1.6380 33.51 minimum fitness limit

reached

E11 babbaa 66 2.6520 32.93 minimum fitness limit

reached

E12 babbab 233 9.0481 34.02 minimum fitness limit

reached

E13 babbaa 80 3.2760 32.53 minimum fitness limit

reached

E14 babbaa 382 11.3881 33.06 minimum fitness limit

reached

E15 babbaa 150 4.5708 33.16 minimum fitness limit

reached

E16 babbab 38 1.2948 36.49 minimum fitness limit

reached

E17 babbab 140 5.2884 32.92 minimum fitness limit

reached

E18 babbab 504 15.7249 34.06 Minimum fitness limit

reached

E19 babbab 133 5.0700 33.69 Minimum fitness limit

reached

E20 babbab 212 8.2369 33.16 minimum fitness limit

reached

Average

-------- 206 7.41629 38.391 ------------------------

 A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 125

Binary Form Experiments:

Table A-6: Twenty Experiments for BF in Program 3.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E1 babbaa 419 52.9623 35.21 minimum fitness limit

reached

E2 babbab 438 62.6656 39.33 minimum fitness limit

reached

E3 babbaa 105 13.2601 36.07 minimum fitness limit

reached

E4 babbaa 18 2.8860 44.28 minimum fitness limit

reached

E5 babbab 390 55.5208 36.3 minimum fitness limit

reached

E6 babbab 140 18.6577 39.01 minimum fitness limit

reached

E7 babbab 276 39.2343 39.15 minimum fitness limit

reached

E8 babbaa 168 23.9774 37.66 minimum fitness limit

reached

E9 babbaa 26 3.9000 54.42 minimum fitness limit

reached

E10 babbab 34 5.0076 37.19 minimum fitness limit

reached

E11 babbab 21 3.1668 39.38 minimum fitness limit

reached

E12 babbaa 105 15.0541 41.04 minimum fitness limit

reached

E13 babbaa 24 3.4944 40.84 minimum fitness limit

reached

E14 babbaa 37 5.6004 39.16 minimum fitness limit

reached

E15 babbaa 194 27.4250 38.54 minimum fitness limit

reached

E16 babbab 344 45.8643 38.4 minimum fitness limit

reached

E17 babbab 16 2.2776 59.56 minimum fitness limit

reached

E18 babbaa 157 20.8885 38.68 Minimum fitness limit

reached

E19 babbaa 62 8.8765 39.64 Minimum fitness limit

reached

E20 babbab 108 14.4145 38.8 minimum fitness limit

reached

Average

--------- 154 21.256695 40.633 ------------------------

 A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 126

Program 4

Continuous Form Experiments:

Table A-7: Twenty Experiments for CF in Program 4.

Time

No.

Test Case Generations

No.

Time Mean f(x) Termination Reason

E1 baab 235

5.4288 33.12 minimum fitness limit reached

E2 baaab 204

4.3680 33.7 minimum fitness limit reached

E3 bb 111

2.3244 32.49 minimum fitness limit reached

E4 baaaab 971

39.9675 33.19 minimum fitness limit reached

E5 baaaab 353

6.6456 36.63 minimum fitness limit reached

E6 baaaab 723

31.2002 33.83 minimum fitness limit reached

E7 baaaab 1178

51.8547 32.46 minimum fitness limit reached

E8 baaab 70

1.8876 33.15 minimum fitness limit reached

E9 baab 263

8.3929 33.78 minimum fitness limit reached

E10 bab 265

8.4397 32.93 minimum fitness limit reached

E11 bab 168

3.7128 33.63 minimum fitness limit reached

E12 bab 626

26.2706 33.26 minimum fitness limit reached

E13 bab 48

1.5600 33.16 minimum fitness limit reached

E14 baab 199

5.7252 32.88 minimum fitness limit reached

E15 baaaab 510

21.6997 33.89 minimum fitness limit reached

E16 baaab 725

20.7949 33.06 minimum fitness limit reached

E17 bab 1056

35.7866 32.51 minimum fitness limit reached

E18 baaaab 615

12.9013 33.45 minimum fitness limit reached

E19 baaab 733

32.7134 33.32 minimum fitness limit reached

E20 baab 512

22.0897 33.03 minimum fitness limit reached

Average ---------- 478 17.18818 33.3735 -----------------

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 127

Binary Form Experiments:

Table A-8: Twenty Experiments for BF in Program 4.
Exp

No.

Test Case Generations

No.

Time Mean

f(x)

Termination Reason

E1 baaab 11 4.6800 74.09 minimum fitness limit

reached

E2 bb 56 5.8188 34.23 minimum fitness limit

reached

E3 baab 10 2.1528 53.91 minimum fitness limit

reached

E4 bb 26 3.1044 34.54 minimum fitness limit

reached

E5 baaab 25 5.8968 45.55 minimum fitness limit

reached

E6 bab 404 61.2616 34.6 minimum fitness limit

reached

E7 bab 14 2.3712 37.24 minimum fitness limit

reached

E8 bab 6 1.2792 69.69 minimum fitness limit

reached

E9 baaab 42 10.2961 38.15 minimum fitness limit

reached

E10 baab 223 44.4447 37.74 minimum fitness limit

reached

E11 baaab 12 3.2916 60.28 minimum fitness limit

reached

E12 baab 1632 330.8937 38.26 minimum fitness limit

reached

E13 baab 126 25.1318 34.68 minimum fitness limit

reached

E14 baaab 1545 369.1296 38.99 minimum fitness limit

reached

E15 baaaab 27 7.8469 38.67 minimum fitness limit

reached

E16 baaab 18 4.7736 38.78 minimum fitness limit

reached

E17 baaab 235 55.9576 36.42 minimum fitness limit

reached

E18 bab 13 2.4180 36.95 minimum fitness limit

reached

E19 bab 221 35.6150 34.14 minimum fitness limit

reached

E20 bab 162 26.0678 36.38 minimum fitness limit

reached

Average ----------- 240 50.12156

42.6645

 A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 128

Program 5

Continuous Form Experiments:

Table A-9: Twenty Experiments for CF in Program 5.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E1 ba 71 2.6052 32.42 minimum fitness limit

reached

E2 bb 154 7.6752 32.42 minimum fitness limit

reached

E3 bbbbbb 251 12.8857 32.88 minimum fitness limit

reached

E4 baaa 107 4.5552 33.23 minimum fitness limit

reached

E5 bbbbb 245 12.4177 33.8 minimum fitness limit

reached

E6 bb 41 2.2308 33.16 minimum fitness limit

reached

E7 baaaaa 24 1.4820 33.3 minimum fitness limit

reached

E8 bbbb 318 16.3177 33.55 minimum fitness limit

reached

E9 baaa 487 20.8417 33.16 minimum fitness limit

reached

E10 bbbbb 654 34.1798 32.5 minimum fitness limit

reached

E11 ba 207 10.0777 32.48 minimum fitness limit

reached

E12 ba 3 0.3432 61.26 minimum fitness limit

reached

E13 bbbbb 15 0.9984 34.4 minimum fitness limit

reached

E14 bb 159 6.5052 32.65 minimum fitness limit

reached

E15 bbbbbb 287 15.3817 33.48 minimum fitness limit

reached

E16 baaa 149 7.6128 32.9 minimum fitness limit

reached

E17 ba 264 12.9949 32.62 minimum fitness limit

reached

E18 bbb 44 2.1996 33.16 Minimum fitness limit

reached

E19 bb 299 12.3709 32.43 Minimum fitness limit

reached

E20 bbbb 199 8.4553 33.27 minimum fitness limit

reached

Average -------- 199 9.606535 34.4535 ------------------------

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 129

Binary Form Experiments:

Table A-10: Twenty Experiments for BF in Program 5

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E1 b 5 1.2012 36.85 minimum fitness limit

reached

E2 baabb 1004 622.7872 37.84 minimum fitness limit

reached

E3 bbbbbb 14 9.8593 51.6 minimum fitness limit

reached

E4 bbbb 183 93.2262 36.52 minimum fitness limit

reached

E5 bbb 6 3.0420 67.11 minimum fitness limit

reached

E6 bab 8 3.6816 59.32 minimum fitness limit

reached

E7 baaa 23 12.6205 37.16 minimum fitness limit

reached

E8 bbb 9 4.0872 52.67 minimum fitness limit

reached

E9 baa 234 100.8702 34.03 minimum fitness limit

reached

E10 bbbbb 67 43.5711 35.77 minimum fitness limit

reached

E11 baabb 13 8.8921 59.82 minimum fitness limit

reached

E12 baa 16 7.4724 38.31 minimum fitness limit

reached

E13 baaa 143 77.9069 34.18 minimum fitness limit

reached

E14 bb 5 2.0748 48.96 minimum fitness limit

reached

E15 baabb 350 242.4412 38.12 minimum fitness limit

reached

E16 baabb 15 10.5145 42.41 minimum fitness limit

reached

E17 bbbbb 21 14.2585 41.3 minimum fitness limit

reached

E18 bab 6 2.9640 71.67 Minimum fitness limit

reached

E19 ba 2 1.1076 87.04 Minimum fitness limit

reached

E20 baabb 660 410.6414 35.47 minimum fitness limit

reached

Average --------- 139 83.660995 47.3075 ------------------------

 A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 130

Program 6

Continuous Form Experiments:

Table A-11: Twenty Experiments for CF in Program 6.
Exp

No.

Test

Case

Generations

No.

Time Mean f(x) Termination Reason

E1 baaa 313 14.7265 33.15 minimum fitness limit

reached

E2 baaaaa 1120 49.7175 32.85 minimum fitness limit

reached

E3 baaa 117 6.3648 33.03 minimum fitness limit

reached

E4 baaabb 43 2.6832 33.2 minimum fitness limit

reached

E5 bb 246 8.6425 32.42 minimum fitness limit

reached

E6 bbbb 261 14.2117 34.32 minimum fitness limit

reached

E7 baabb 108 4.8672 34.88 minimum fitness limit

reached

E8 bab 219 11.1853 32.42 minimum fitness limit

reached

E9 bbbb 90 4.8984 34.26 minimum fitness limit

reached

E10 bbbbbb 237 12.4333 34.27 minimum fitness limit

reached

E11 baa 163 8.3461 32.42 minimum fitness limit

reached

E12 baabba 1248 71.5109 32.42 minimum fitness limit

reached

E13 bab 76 3.9624 32.42 minimum fitness limit

reached

E14 bbbb 271 11.8873 33.76 minimum fitness limit

reached

E15 baabb 414 21.9181 32.92 minimum fitness limit

reached

E16 baaaab 30 1.3572 33.43 minimum fitness limit

reached

E17 baaa 278 14.4145 33.33 minimum fitness limit

reached

E18 bb 144 7.1760 32.74 minimum fitness limit

reached

E19 bbbb 368 19.3441 33.51 minimum fitness limit

reached

E20 baabb 73 3.9000 34.14 minimum fitness limit

reached

Average ------- 291 14.67735 33.2945 -----------------------

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 131

Binary Form Experiments:

Table A-12: Twenty Experiments for BF in Program 6.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E1 baabb 12 10.1401 47.26 minimum fitness limit

reached

E2 bbb 6 3.5724 66.65 minimum fitness limit

reached

E3 baabb 263 207.2317 36.09 minimum fitness limit

reached

E4 bbbbb 12 10.0777 70.45 minimum fitness limit

reached

E5 bbbb 334 210.8354 34.73 minimum fitness limit

reached

E6 bbbb 280 179.1671 35.78 minimum fitness limit

reached

E7 bb 4 3.3072 65.1 minimum fitness limit

reached

E8 b 1 0.5772 46.56 minimum fitness limit

reached

E9 baabb 252 195.1573 35.75 minimum fitness limit

reached

E10 bbbbb 281 216.9194 37.7 minimum fitness limit

reached

E11 bb 28 10.2493 35.5 minimum fitness limit

reached

E12 bb 6 2.5896 49.14 minimum fitness limit

reached

E13 bab 7 4.0716 64.73 minimum fitness limit

reached

E14 bbbbb 21 16.8013 36.81 minimum fitness limit

reached

E15 bbbbb 743 570.5737 35.6 minimum fitness limit

reached

E16 baabb 27 21.3097 38.93 minimum fitness limit

reached

E17 bbbb 10 7.0200 64.16 minimum fitness 0limit

reached

E18 baabb 286 217.2782 36.6 Mi0nimum fitness li0mit

reached

E19 bbb 189 92.3526 33.48 Min0imum fitness lim0it

reached

E20 baaa 16 10.6549 36.32 minimum fitness limit

reached

Average --------- 139 99.49432 45.367 ------------------------

 A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 132

Program 7

Continuous Form Experiments:

Table A-13: Twenty Experiments for CF in Program 7.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E1 baaaaa 53 2.4024 33.66 minimum fitness limit

reached

E2 baaaab 548 24.4922 32.47 minimum fitness limit

reached

E3 baa 265 8.8453 33.3 minimum fitness limit

reached

E4 baaaab 208 8.9389 34.3 minimum fitness limit

reached

E5 baa 14 0.6552 36.28 minimum fitness limit

reached

E6 baaab 308 13.1353 32.96 minimum fitness limit

reached

E7 baab 809 36.6446 32.87 minimum fitness limit

reached

E8 baaaaa 311 13.3537 33.3 minimum fitness limit

reached

E9 baaab 1474 56.2696 32.42 minimum fitness limit

reached

E10 baaab 242 8.6737 32.85 minimum fitness limit

reached

E11 baaaaa 1002 39.4371 35.69 minimum fitness limit

reached

E12 baa 38 1.3884 32.75 minimum fitness limit

reached

E13 baaaa 536 18.8917 32.98 minimum fitness limit

reached

E14 baaa 58 2.5740 33.03 minimum fitness limit

reached

E15 baaaaa 889 35.2406 32.42 minimum fitness limit

reached

E16 baaaa 823 37.9862 33.85 minimum fitness limit

reached

E17 bab 244 10.8421 32.91 minimum fitness limit

reached

E18 baaab 80 3.4944 35.62 minimum fitness limit

reached

E19 baaaab 563 25.9742 34.1 minimum fitness limit

reached

E20 baaab 668 30.5138 32.42 minimum fitness limit

reached

Average ------- 457 18.98767 33.509 ------------------------

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 133

Binary Form Experiments:

Table A-14: Twenty Experiments for BF in Program 7.

Exp

No.

Test

Case

Generations

No.

Time Mean

f(x)

Termination Reason

E1 baaaa 562 227.0127 36.58 minimum fitness limit

reached

E2 baab 13 4.8516 39.17 minimum fitness limit

reached

E3 baaab 485 89.9936 34.53 minimum fitness limit

reached

E4 baaa 693 213.7994 36.7 minimum fitness limit

reached

E5 bb 14 2.7924 33.63 minimum fitness limit

reached

E6 baaaa 262 106.2211 36 minimum fitness limit

reached

E7 baa 7 2.1060 70.19 minimum fitness limit

reached

E8 baaaa 136 54.0231 35.43 minimum fitness limit

reached

E9 baaaa 379 150.6502 37.53 minimum fitness limit

reached

E10 baaab 10 4.4928 63.99 minimum fitness limit

reached

E11 baaab 46 18.6577 35.47 minimum fitness limit

reached

E12 baaab 1250 503.5088 37.59 minimum fitness limit

reached

E13 baab 176 57.7516 36.7 minimum fitness limit

reached

E14 baaa 8 3.4632 58.99 minimum fitness limit

reached

E15 baaaa 956 412.6850 37.88 minimum fitness limit

reached

E16 Baab 9 3.4632 47.47 minimum fitness limit

reached

E17 bb 8 1.9032 41.08 minimum fitness limit

reached

E18 baab 18 6.3336 35.23 minimum fitness limit

reached

E19 baaaa 466 187.8096 37.09 minimum fitness limit

reached

E20 baaa 10 3.8688 67.06 minimum fitness limit

reached

Average ------- 275 102.76938 42.9155 ------------------------

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 134

لفحص ا�لي للتعابير المنتظمة المتوقعةتوليد ا

 إعداد

 رنا علي بدوي سمحان

 المشرف

 الدكتور محمد الشريدة

 المشرف المشارك

 الدكتور عبد اللطيف ابو دلھوم

 ملخص

يجب ان لذا .في ھذه اVيام تحتل التكنولوجيا مكانة متميزة في جميع مجاVت حياتنا اليومية

اخذا بعين اVعتبار انھا تتكون من ,وجيا بالدقة و الموثوقية العالية للمستخدم تتصف ھذه التكنول

نتيجة لذلك نجد من الضروري التركيز على مرحلة الفحص في ؛ البرمجيات بشكل رئيسي

 .التكنولوجيا و خاصة فحص البرمجيات

 Vخ ھذه الرسالة اوVت اVيجاد مجموعة من حاV لفحص ة تبار المصممتقترح طريقة جديدة

 ة الى ھذه الطريقة المقترح واحتجنا لتصميم . الجمل الشرطية التي تحتوي على التعابير المنتظمة

لتعابير ليجاد حل Vذلك نموذج الحالة و : منھا و اVساليب مجموعة من التقنيات استخدام

عمل فحص لكل جملة شرطية طريقة فحص الجمل الشرطية و ذلك لايضا و استخدمنا، المنتظمة

استخدمنا اسلوب الخوارزميات كذلك ، وفي البرنامج الذي يتم فحصه مرة واحد على اVقل

الجينية كوسيلة بحث عن حاVت اVختبار ال�زمة لعمل الفحص اVلي على الجمل الشرطية التي

 .تحتوي على التعابير المنتظمة

حيث اعتمدنا سبع تجارب باستخدام . Matlab7.1دمنا برمجية لتنفيذ الطريقة المقترح استخ

دراسة الو من ثم اخضعنا نتائج التجارب الى . العشري و التمثيل التمثيل الثنائي: طريقتين

 فحص الجمل الشرطيةو ھو بناء على ما سبق تم تحقيق الھدف من ھذا البحث او اخير .بحثالو

ووجدنا ان التمثيل العشري اسرع في ايجاد الحل ولكن التمثيل .نتظمةالتعابير المالتي تحتوي على

 .الثنائي يساعد على ايجاد الحل بعدد اجيال اقل

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

www.manaraa.com

 135

A
ll

R
ig

ht
s R

es
er

ve
d

- L
ib

ra
ry

 o
f U

ni
ve

rs
ity

 o
f J

or
da

n
- C

en
te

r
of

 T
he

si
s D

ep
os

it

